Estadísticas: permutación pares e impares
Considere X como un conjunto finito de al menos dos elementos, entonces las permutaciones de X se pueden dividir en dos categorías de igual tamaño: permutación par y permutación impar.
Permutación impar
La permutación impar es un conjunto de permutaciones obtenidas de un número impar de intercambios de dos elementos en un conjunto. Se denota por un sumbol de permutación de -1. Para un conjunto de n números donde n> 2, hay $ {\ frac {n!} {2}} $ permutaciones posibles. Por ejemplo, para n = 1, 2, 3, 4, 5, ..., las posibles permutaciones impares son 0, 1, 3, 12, 60 y así sucesivamente ...
Ejemplo
Calcule la permutación impar para el siguiente conjunto: {1,2,3,4}.
Solution:
Aquí n = 4, por lo tanto, no total. de permutación impar posible son $ {\ frac {4!} {2} = \ frac {24} {2} = 12} $. Los siguientes son los pasos para generar permutaciones impares.
Paso 1:
Intercambia dos números una vez. Las siguientes son las permutaciones que se pueden obtener:
Paso 2:
Intercambia dos números tres veces. Las siguientes son las permutaciones que se pueden obtener:
Incluso permutación
Incluso la permutación es un conjunto de permutaciones obtenidas de un número par de intercambios de dos elementos en un conjunto. Se denota mediante un símbolo de permutación de +1. Para un conjunto de n números donde n> 2, hay $ {\ frac {n!} {2}} $ permutaciones posibles. Por ejemplo, para n = 1, 2, 3, 4, 5, ..., las permutaciones pares posibles son 0, 1, 3, 12, 60 y así sucesivamente ...
Ejemplo
Calcule la permutación par para el siguiente conjunto: {1,2,3,4}.
Solution:
Aquí n = 4, por lo tanto, no total. de permutación par posible son $ {\ frac {4!} {2} = \ frac {24} {2} = 12} $. Los siguientes son los pasos para generar permutaciones pares.
Paso 1:
Intercambia dos números cero tiempo. A continuación se muestra la permutación que se puede obtener:
Paso 2:
Intercambia dos números dos veces. Las siguientes son las permutaciones que se pueden obtener: