Programa de estudios de matemáticas de la 9a clase de CBSE
Estructura del curso
I Término Unidades | Temas | Marcas |
---|---|---|
yo | Sistema de numeración | 17 |
II | Álgebra | 25 |
III | Geometría | 37 |
IV | Geometría coordinada | 6 |
V | Medición | 5 |
Total | 90 | |
Unidades de plazo II | Temas | Marcas |
II | Álgebra | dieciséis |
III | Geometría | 38 |
V | Medición | 18 |
VI | Estadísticas | 10 |
VII | Probabilidad | 8 |
Total | 90 |
Plan de estudios del primer trimestre
Unidad I: Sistemas numéricos
1. Real Numbers
Revisión de la representación de números naturales
Integers
Números racionales en la recta numérica
Representación de decimales recurrentes terminales / no terminales, en la recta numérica mediante aumentos sucesivos
Números racionales como decimales recurrentes / terminales
Ejemplos de decimales no recurrentes / no terminantes
Existencia de números no racionales (números irracionales) como √2, √3 y su representación en la recta numérica
Explicar que cada número real está representado por un punto único en la recta numérica y, a la inversa, cada punto en la recta numérica representa un número real único.
Existencia de √x para un número real positivo dado x (prueba visual a enfatizar)
Definición de raíz enésima de un número real
Recordatorio de leyes de exponentes con potencias integrales
Exponentes racionales con bases reales positivas (a realizar en casos particulares, lo que permite al alumno llegar a las leyes generales)
Racionalización (con significado preciso) de números reales del tipo 1 / (a + b√x) y 1 / (√x + √y) (y sus combinaciones) donde xey son números naturales y ayb son números enteros
Unidad II: Álgebra
1. Polynomials
Definición de un polinomio en una variable, con ejemplos y contraejemplos
Coeficientes de un polinomio, términos de un polinomio y polinomio cero
Grado de un polinomio
Polinomios constantes, lineales, cuadráticos y cúbicos
Monomios, binomios, trinomios
Factores y múltiplos
Ceros de un polinomio
Motivar y enunciar el teorema del resto con ejemplos
Declaración y demostración del teorema del factor
Factorización de ax 2 + bx + c, a ≠ 0 donde a, byc son números reales, y de polinomios cúbicos usando el Teorema del factor
Recuerdo de expresiones e identidades algebraicas
Verificación adicional de identidades del tipo (x + y + z) 2 = x 2 + y 2 + z 2 + 2xy + 2yz + 2zx, (x ± y) 3 = x 3 ± y 3 ± 3xy (x ± y) , x 3 ± y 3 = (x ± y) (x 2 ± xy + y 2 ), x 3 + y 3 + z 3 - 3xyz = (x + y + z) (x 2 + y 2 + z 2 - xy - yz - zx) y su uso en la factorización de polinomios
Expresiones simples reducibles a estos polinomios
Unidad III: Geometría
1. Introduction to Euclid's Geometry
Historia: geometría en la India y geometría de Euclides
El método de Euclides para formalizar el fenómeno observado en matemáticas rigurosas con definiciones, nociones comunes / obvias, axiomas / postulados y teoremas.
Los cinco postulados de Euclides
Versiones equivalentes del quinto postulado
Mostrando la relación entre axioma y teorema, por ejemplo:
(Axioma) 1. Dados dos puntos distintos, existe una y solo una línea que los atraviesa
(Teorema) 2. (Demuestre) Dos rectas distintas no pueden tener más de un punto en común
2. Lines and Angles
(Motivar) Si un rayo se encuentra en una línea, entonces la suma de los dos ángulos adyacentes así formados es 180 ° y el inverso
(Demuestre) Si dos rectas se cruzan, los ángulos verticalmente opuestos son iguales
(Motivar) Resultados en ángulos correspondientes, ángulos alternos, ángulos interiores cuando una transversal interseca dos líneas paralelas
(Motivar) Las líneas que son paralelas a una línea dada son paralelas
(Demuestre) La suma de los ángulos de un triángulo es 180 o
(Motivar) Si se produce un lado de un triángulo, el ángulo exterior así formado es igual a la suma de los dos ángulos opuestos interiores
3. Triangles
(Motivar) Dos triángulos son congruentes si dos lados y el ángulo incluido de un triángulo son iguales a dos lados y al ángulo incluido del otro triángulo (SAS Congruencia)
(Demuestre) Dos triángulos son congruentes si dos ángulos cualesquiera y el lado incluido de un triángulo es igual a dos ángulos cualesquiera y el lado incluido del otro triángulo (Congruencia ASA)
(Motivar) Dos triángulos son congruentes si los tres lados de un triángulo son iguales a tres lados del otro triángulo (Congruencia SSS)
(Motivar) Dos triángulos rectángulos son congruentes si la hipotenusa y un lado de un triángulo son iguales (respectivamente) a la hipotenusa y un lado del otro triángulo
(Demuestre) Los ángulos opuestos a lados iguales de un triángulo son iguales
(Motivar) Los lados opuestos a los ángulos iguales de un triángulo son iguales
(Motivar) Desigualdades de triángulos y relación entre las desigualdades del 'ángulo y el lado opuesto' en triángulos
Unidad IV: Geometría de coordenadas
1. Coordinate Geometry
El plano cartesiano, coordenadas de un punto, nombres y términos asociados con el plano de coordenadas, notaciones, puntos de trazado en el plano.
Unidad V: Medición
1. Areas
Área de un triángulo usando la fórmula de Heron (sin prueba) y su aplicación para encontrar el área de un cuadrilátero.
Programa de estudios del segundo trimestre
Unidad II: Álgebra
2. Linear Equations in Two Variables
Recordatorio de ecuaciones lineales en una variable
Introducción a la ecuación en dos variables
Centrarse en ecuaciones lineales del tipo ax + by + c = 0
Demuestre que una ecuación lineal en dos variables tiene infinitas soluciones y justifique que se escriban como pares ordenados de números reales, graficando y mostrando que parecen estar en una línea.
Ejemplos, problemas de la vida real, incluidos problemas de Razón y Proporción y con soluciones algebraicas y gráficas que se realizan simultáneamente.
Unidad III: Geometría
4. Quadrilaterals
(Demuestre) La diagonal divide un paralelogramo en dos triángulos congruentes
(Motivar) En un paralelogramo los lados opuestos son iguales, y viceversa
(Motivar) En un paralelogramo los ángulos opuestos son iguales, y viceversa
(Motivar) Un cuadrilátero es un paralelogramo si un par de sus lados opuestos es paralelo e igual
(Motivar) En un paralelogramo, las diagonales se bisecan y viceversa
(Motivar) En un triángulo, el segmento de línea que une los puntos medios de dos lados cualesquiera es paralelo al tercer lado y (motivar) su inverso
5. Area
Revisar el concepto de área, recordar el área de un rectángulo
(Demuestre) Los paralelogramos en la misma base y entre los mismos paralelos tienen la misma área
(Motivar) Triángulos en la misma base (o base igual) y entre los mismos paralelos son iguales en área
6. Circles
A través de ejemplos, llegue a definiciones de conceptos relacionados con el círculo, radio, circunferencia, diámetro, cuerda, arco, secante, sector, segmento, ángulo subtendido
(Demuestre) Cuerdas iguales de un círculo subtienden ángulos iguales en el centro y (motivan) su recíproco
(Motivar) La perpendicular desde el centro de un círculo a un acorde biseca el acorde y, a la inversa, la línea trazada a través del centro de un círculo para bisecar un acorde es perpendicular al acorde
(Motivar) Hay un solo círculo que pasa por tres puntos no colineales dados
(Motivar) Los acordes iguales de un círculo (o de círculos congruentes) son equidistantes del centro (o sus respectivos centros) y viceversa
(Demuestre) El ángulo subtendido por un arco en el centro es el doble del ángulo subtendido por él en cualquier punto de la parte restante del círculo.
(Motivar) Los ángulos en el mismo segmento de un círculo son iguales
(Motivar) Si un segmento de línea que une dos puntos subtiende un ángulo igual en otros dos puntos que se encuentran en el mismo lado de la línea que contiene el segmento, los cuatro puntos se encuentran en un círculo.
(Motivar) La suma de cualquiera de los pares de ángulos opuestos de un cuadrilátero cíclico es 180 ° y su inverso.
7. Constructions
Construcción de bisectrices de segmentos de recta y ángulos de medida 60 o , 90 o , 45 o etc., triángulos equiláteros
Construcción de un triángulo dada su base, suma / diferencia de los otros dos lados y un ángulo de base
Construcción de un triángulo de perímetro y ángulos de base dados
Unidad V: Medición
2. Surface Areas and Volumes
Superficies y volúmenes de -
- Cubes
- Cuboids
- Esferas (incluidos los hemisferios)
- Cilindros / conos circulares derechos
Unidad VI: Estadísticas
- Introducción a la estadística
- Conjunto de datos
- Presentación de datos -
- Forma de tabla
- No agrupado / agrupado
- Gráficos de barras
- Histogramas (con diferentes longitudes de base)
- Polígonos de frecuencia
- Análisis cualitativo de datos para elegir la forma correcta de presentación de los datos recopilados.
- Media, mediana, moda de datos desagrupados.
Unidad VII: Probabilidad
Historia, experimentos repetidos y enfoque de probabilidad de frecuencia observada
El foco está en la probabilidad empírica. (Se dedicará una gran cantidad de tiempo a actividades grupales e individuales para motivar el concepto; los experimentos se extraerán de situaciones de la vida real y de ejemplos utilizados en el capítulo sobre estadísticas)
Para descargar pdf Haga clic aquí .