Python Pandas - Funciones de ventana

Para trabajar con datos numéricos, Pandas proporciona pocas variantes como pesos rodantes, en expansión y en movimiento exponencial para las estadísticas de ventanas. Entre estos estansum, mean, median, variance, covariance, correlation, etc.

Ahora aprenderemos cómo se pueden aplicar cada uno de estos en objetos DataFrame.

Función .rolling ()

Esta función se puede aplicar a una serie de datos. Especifica elwindow=n argumento y aplique la función estadística apropiada encima de él.

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(10, 4),
   index = pd.date_range('1/1/2000', periods=10),
   columns = ['A', 'B', 'C', 'D'])
print df.rolling(window=3).mean()

Sus output es como sigue -

A           B           C           D
2000-01-01        NaN         NaN         NaN         NaN
2000-01-02        NaN         NaN         NaN         NaN
2000-01-03   0.434553   -0.667940   -1.051718   -0.826452
2000-01-04   0.628267   -0.047040   -0.287467   -0.161110
2000-01-05   0.398233    0.003517    0.099126   -0.405565
2000-01-06   0.641798    0.656184   -0.322728    0.428015
2000-01-07   0.188403    0.010913   -0.708645    0.160932
2000-01-08   0.188043   -0.253039   -0.818125   -0.108485
2000-01-09   0.682819   -0.606846   -0.178411   -0.404127
2000-01-10   0.688583    0.127786    0.513832   -1.067156

Note - Dado que el tamaño de la ventana es 3, para los dos primeros elementos hay nulos y desde el tercero el valor será el promedio de la n, n-1 y n-2elementos. Así también podemos aplicar varias funciones como se mencionó anteriormente.

Función .expanding ()

Esta función se puede aplicar a una serie de datos. Especifica elmin_periods=n argumento y aplique la función estadística apropiada encima de él.

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(10, 4),
   index = pd.date_range('1/1/2000', periods=10),
   columns = ['A', 'B', 'C', 'D'])
print df.expanding(min_periods=3).mean()

Sus output es como sigue -

A           B           C           D
2000-01-01        NaN         NaN         NaN         NaN
2000-01-02        NaN         NaN         NaN         NaN
2000-01-03   0.434553   -0.667940   -1.051718   -0.826452
2000-01-04   0.743328   -0.198015   -0.852462   -0.262547
2000-01-05   0.614776   -0.205649   -0.583641   -0.303254
2000-01-06   0.538175   -0.005878   -0.687223   -0.199219
2000-01-07   0.505503   -0.108475   -0.790826   -0.081056
2000-01-08   0.454751   -0.223420   -0.671572   -0.230215
2000-01-09   0.586390   -0.206201   -0.517619   -0.267521
2000-01-10   0.560427   -0.037597   -0.399429   -0.376886

Función .ewm ()

ewmse aplica a una serie de datos. Especifique cualquiera de los campos com, span,halflifeargumento y aplique la función estadística apropiada encima de él. Asigna los pesos de forma exponencial.

import pandas as pd
import numpy as np
 
df = pd.DataFrame(np.random.randn(10, 4),
   index = pd.date_range('1/1/2000', periods=10),
   columns = ['A', 'B', 'C', 'D'])
print df.ewm(com=0.5).mean()

Sus output es como sigue -

A           B           C           D
2000-01-01   1.088512   -0.650942   -2.547450   -0.566858
2000-01-02   0.865131   -0.453626   -1.137961    0.058747
2000-01-03  -0.132245   -0.807671   -0.308308   -1.491002
2000-01-04   1.084036    0.555444   -0.272119    0.480111
2000-01-05   0.425682    0.025511    0.239162   -0.153290
2000-01-06   0.245094    0.671373   -0.725025    0.163310
2000-01-07   0.288030   -0.259337   -1.183515    0.473191
2000-01-08   0.162317   -0.771884   -0.285564   -0.692001
2000-01-09   1.147156   -0.302900    0.380851   -0.607976
2000-01-10   0.600216    0.885614    0.569808   -1.110113

Las funciones de ventana se utilizan principalmente para encontrar las tendencias dentro de los datos de forma gráfica suavizando la curva. Si hay mucha variación en los datos diarios y hay muchos puntos de datos disponibles, entonces tomar las muestras y graficar es un método y aplicar los cálculos de ventana y graficar el gráfico en los resultados es otro método. Con estos métodos, podemos suavizar la curva o la tendencia.