sensores - programacion android pdf 2018
Cómo usar los datos del sensor onSensorChanged en combinación con OpenGL (6)
Consulte la aplicación de demostración Sensor fusion que utiliza diferentes sensores (giroscopio, vector de rotación, acelerómetro + brújula, etc.) y representa las salidas de onSensorChanged-events como un cubo coloreado que gira en función de su teléfono.
Los resultados de esos eventos se almacenan como cuaterniones y matrices de rotación y se utilizan en esta clase, que OpenGL.
(Editar: agregué el mejor enfoque de trabajo en mi marco de realidad aumentada y ahora también tomo en cuenta el giroscopio, lo que lo hace mucho más estable de nuevo: marco DroidAR )
He escrito una TestSuite para averiguar cómo calcular los ángulos de rotación a partir de los datos que obtienes en SensorEventListener.onSensorChanged()
. Realmente espero que puedas completar mi solución para ayudar a las personas que tendrán los mismos problemas que yo. Aquí está el código, creo que lo comprenderá después de leerlo.
Siéntase libre de cambiarlo, la idea principal fue implementar varios métodos para enviar los ángulos de orientación a la vista abierta o cualquier otro objetivo que lo necesite.
los métodos 1 a 4 están funcionando, están enviando directamente rotationMatrix a la vista de OpenGl.
El método 6 funciona ahora también, pero no tengo ninguna explicación de por qué la rotación tiene que hacerse yx z ..
todos los otros métodos no funcionan o fallan y espero que alguien los haga funcionar. Creo que el mejor método sería el método 5 si funcionara, porque sería el más fácil de entender pero no estoy seguro de cuán eficiente es . el código completo no está optimizado, por lo que recomiendo no usarlo tal como está en su proyecto.
aquí está:
/**
* This class provides a basic demonstration of how to use the
* {@link android.hardware.SensorManager SensorManager} API to draw a 3D
* compass.
*/
public class SensorToOpenGlTests extends Activity implements Renderer,
SensorEventListener {
private static final boolean TRY_TRANSPOSED_VERSION = false;
/*
* MODUS overview:
*
* 1 - unbufferd data directly transfaired from the rotation matrix to the
* modelview matrix
*
* 2 - buffered version of 1 where both acceleration and magnetometer are
* buffered
*
* 3 - buffered version of 1 where only magnetometer is buffered
*
* 4 - buffered version of 1 where only acceleration is buffered
*
* 5 - uses the orientation sensor and sets the angles how to rotate the
* camera with glrotate()
*
* 6 - uses the rotation matrix to calculate the angles
*
* 7 to 12 - every possibility how the rotationMatrix could be constructed
* in SensorManager.getRotationMatrix (see
* http://www.songho.ca/opengl/gl_anglestoaxes.html#anglestoaxes for all
* possibilities)
*/
private static int MODUS = 2;
private GLSurfaceView openglView;
private FloatBuffer vertexBuffer;
private ByteBuffer indexBuffer;
private FloatBuffer colorBuffer;
private SensorManager mSensorManager;
private float[] rotationMatrix = new float[16];
private float[] accelGData = new float[3];
private float[] bufferedAccelGData = new float[3];
private float[] magnetData = new float[3];
private float[] bufferedMagnetData = new float[3];
private float[] orientationData = new float[3];
// private float[] mI = new float[16];
private float[] resultingAngles = new float[3];
private int mCount;
final static float rad2deg = (float) (180.0f / Math.PI);
private boolean landscape;
public SensorToOpenGlTests() {
}
/** Called with the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
openglView = new GLSurfaceView(this);
openglView.setRenderer(this);
setContentView(openglView);
}
@Override
protected void onResume() {
// Ideally a game should implement onResume() and onPause()
// to take appropriate action when the activity looses focus
super.onResume();
openglView.onResume();
if (((WindowManager) getSystemService(WINDOW_SERVICE))
.getDefaultDisplay().getOrientation() == 1) {
landscape = true;
} else {
landscape = false;
}
mSensorManager.registerListener(this, mSensorManager
.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
SensorManager.SENSOR_DELAY_GAME);
mSensorManager.registerListener(this, mSensorManager
.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),
SensorManager.SENSOR_DELAY_GAME);
mSensorManager.registerListener(this, mSensorManager
.getDefaultSensor(Sensor.TYPE_ORIENTATION),
SensorManager.SENSOR_DELAY_GAME);
}
@Override
protected void onPause() {
// Ideally a game should implement onResume() and onPause()
// to take appropriate action when the activity looses focus
super.onPause();
openglView.onPause();
mSensorManager.unregisterListener(this);
}
public int[] getConfigSpec() {
// We want a depth buffer, don''t care about the
// details of the color buffer.
int[] configSpec = { EGL10.EGL_DEPTH_SIZE, 16, EGL10.EGL_NONE };
return configSpec;
}
public void onDrawFrame(GL10 gl) {
// clear screen and color buffer:
gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
// set target matrix to modelview matrix:
gl.glMatrixMode(GL10.GL_MODELVIEW);
// init modelview matrix:
gl.glLoadIdentity();
// move camera away a little bit:
if ((MODUS == 1) || (MODUS == 2) || (MODUS == 3) || (MODUS == 4)) {
if (landscape) {
// in landscape mode first remap the rotationMatrix before using
// it with glMultMatrixf:
float[] result = new float[16];
SensorManager.remapCoordinateSystem(rotationMatrix,
SensorManager.AXIS_Y, SensorManager.AXIS_MINUS_X,
result);
gl.glMultMatrixf(result, 0);
} else {
gl.glMultMatrixf(rotationMatrix, 0);
}
} else {
//in all other modes do the rotation by hand
//the order y x z is important!
gl.glRotatef(resultingAngles[2], 0, 1, 0);
gl.glRotatef(resultingAngles[1], 1, 0, 0);
gl.glRotatef(resultingAngles[0], 0, 0, 1);
}
//move the axis to simulate augmented behaviour:
gl.glTranslatef(0, 2, 0);
// draw the 3 axis on the screen:
gl.glVertexPointer(3, GL_FLOAT, 0, vertexBuffer);
gl.glColorPointer(4, GL_FLOAT, 0, colorBuffer);
gl.glDrawElements(GL_LINES, 6, GL_UNSIGNED_BYTE, indexBuffer);
}
public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glViewport(0, 0, width, height);
float r = (float) width / height;
gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
gl.glFrustumf(-r, r, -1, 1, 1, 10);
}
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
gl.glDisable(GL10.GL_DITHER);
gl.glClearColor(1, 1, 1, 1);
gl.glEnable(GL10.GL_CULL_FACE);
gl.glShadeModel(GL10.GL_SMOOTH);
gl.glEnable(GL10.GL_DEPTH_TEST);
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
// load the 3 axis and there colors:
float vertices[] = { 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 };
float colors[] = { 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1 };
byte indices[] = { 0, 1, 0, 2, 0, 3 };
ByteBuffer vbb;
vbb = ByteBuffer.allocateDirect(vertices.length * 4);
vbb.order(ByteOrder.nativeOrder());
vertexBuffer = vbb.asFloatBuffer();
vertexBuffer.put(vertices);
vertexBuffer.position(0);
vbb = ByteBuffer.allocateDirect(colors.length * 4);
vbb.order(ByteOrder.nativeOrder());
colorBuffer = vbb.asFloatBuffer();
colorBuffer.put(colors);
colorBuffer.position(0);
indexBuffer = ByteBuffer.allocateDirect(indices.length);
indexBuffer.put(indices);
indexBuffer.position(0);
}
public void onAccuracyChanged(Sensor sensor, int accuracy) {
}
public void onSensorChanged(SensorEvent event) {
// load the new values:
loadNewSensorData(event);
if (MODUS == 1) {
SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
magnetData);
}
if (MODUS == 2) {
rootMeanSquareBuffer(bufferedAccelGData, accelGData);
rootMeanSquareBuffer(bufferedMagnetData, magnetData);
SensorManager.getRotationMatrix(rotationMatrix, null,
bufferedAccelGData, bufferedMagnetData);
}
if (MODUS == 3) {
rootMeanSquareBuffer(bufferedMagnetData, magnetData);
SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
bufferedMagnetData);
}
if (MODUS == 4) {
rootMeanSquareBuffer(bufferedAccelGData, accelGData);
SensorManager.getRotationMatrix(rotationMatrix, null,
bufferedAccelGData, magnetData);
}
if (MODUS == 5) {
// this mode uses the sensor data recieved from the orientation
// sensor
resultingAngles = orientationData.clone();
if ((-90 > resultingAngles[1]) || (resultingAngles[1] > 90)) {
resultingAngles[1] = orientationData[0];
resultingAngles[2] = orientationData[1];
resultingAngles[0] = orientationData[2];
}
}
if (MODUS == 6) {
SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
magnetData);
final float[] anglesInRadians = new float[3];
SensorManager.getOrientation(rotationMatrix, anglesInRadians);
//TODO check for landscape mode
resultingAngles[0] = anglesInRadians[0] * rad2deg;
resultingAngles[1] = anglesInRadians[1] * rad2deg;
resultingAngles[2] = anglesInRadians[2] * -rad2deg;
}
if (MODUS == 7) {
SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
magnetData);
rotationMatrix = transpose(rotationMatrix);
/*
* this assumes that the rotation matrices are multiplied in x y z
* order Rx*Ry*Rz
*/
resultingAngles[2] = (float) (Math.asin(rotationMatrix[2]));
final float cosB = (float) Math.cos(resultingAngles[2]);
resultingAngles[2] = resultingAngles[2] * rad2deg;
resultingAngles[0] = -(float) (Math.acos(rotationMatrix[0] / cosB))
* rad2deg;
resultingAngles[1] = (float) (Math.acos(rotationMatrix[10] / cosB))
* rad2deg;
}
if (MODUS == 8) {
SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
magnetData);
rotationMatrix = transpose(rotationMatrix);
/*
* this assumes that the rotation matrices are multiplied in z y x
*/
resultingAngles[2] = (float) (Math.asin(-rotationMatrix[8]));
final float cosB = (float) Math.cos(resultingAngles[2]);
resultingAngles[2] = resultingAngles[2] * rad2deg;
resultingAngles[1] = (float) (Math.acos(rotationMatrix[9] / cosB))
* rad2deg;
resultingAngles[0] = (float) (Math.asin(rotationMatrix[4] / cosB))
* rad2deg;
}
if (MODUS == 9) {
SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
magnetData);
rotationMatrix = transpose(rotationMatrix);
/*
* this assumes that the rotation matrices are multiplied in z x y
*
* note z axis looks good at this one
*/
resultingAngles[1] = (float) (Math.asin(rotationMatrix[9]));
final float minusCosA = -(float) Math.cos(resultingAngles[1]);
resultingAngles[1] = resultingAngles[1] * rad2deg;
resultingAngles[2] = (float) (Math.asin(rotationMatrix[8]
/ minusCosA))
* rad2deg;
resultingAngles[0] = (float) (Math.asin(rotationMatrix[1]
/ minusCosA))
* rad2deg;
}
if (MODUS == 10) {
SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
magnetData);
rotationMatrix = transpose(rotationMatrix);
/*
* this assumes that the rotation matrices are multiplied in y x z
*/
resultingAngles[1] = (float) (Math.asin(-rotationMatrix[6]));
final float cosA = (float) Math.cos(resultingAngles[1]);
resultingAngles[1] = resultingAngles[1] * rad2deg;
resultingAngles[2] = (float) (Math.asin(rotationMatrix[2] / cosA))
* rad2deg;
resultingAngles[0] = (float) (Math.acos(rotationMatrix[5] / cosA))
* rad2deg;
}
if (MODUS == 11) {
SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
magnetData);
rotationMatrix = transpose(rotationMatrix);
/*
* this assumes that the rotation matrices are multiplied in y z x
*/
resultingAngles[0] = (float) (Math.asin(rotationMatrix[4]));
final float cosC = (float) Math.cos(resultingAngles[0]);
resultingAngles[0] = resultingAngles[0] * rad2deg;
resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC))
* rad2deg;
resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC))
* rad2deg;
}
if (MODUS == 12) {
SensorManager.getRotationMatrix(rotationMatrix, null, accelGData,
magnetData);
rotationMatrix = transpose(rotationMatrix);
/*
* this assumes that the rotation matrices are multiplied in x z y
*/
resultingAngles[0] = (float) (Math.asin(-rotationMatrix[1]));
final float cosC = (float) Math.cos(resultingAngles[0]);
resultingAngles[0] = resultingAngles[0] * rad2deg;
resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC))
* rad2deg;
resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC))
* rad2deg;
}
logOutput();
}
/**
* transposes the matrix because it was transposted (inverted, but here its
* the same, because its a rotation matrix) to be used for opengl
*
* @param source
* @return
*/
private float[] transpose(float[] source) {
final float[] result = source.clone();
if (TRY_TRANSPOSED_VERSION) {
result[1] = source[4];
result[2] = source[8];
result[4] = source[1];
result[6] = source[9];
result[8] = source[2];
result[9] = source[6];
}
// the other values in the matrix are not relevant for rotations
return result;
}
private void rootMeanSquareBuffer(float[] target, float[] values) {
final float amplification = 200.0f;
float buffer = 20.0f;
target[0] += amplification;
target[1] += amplification;
target[2] += amplification;
values[0] += amplification;
values[1] += amplification;
values[2] += amplification;
target[0] = (float) (Math
.sqrt((target[0] * target[0] * buffer + values[0] * values[0])
/ (1 + buffer)));
target[1] = (float) (Math
.sqrt((target[1] * target[1] * buffer + values[1] * values[1])
/ (1 + buffer)));
target[2] = (float) (Math
.sqrt((target[2] * target[2] * buffer + values[2] * values[2])
/ (1 + buffer)));
target[0] -= amplification;
target[1] -= amplification;
target[2] -= amplification;
values[0] -= amplification;
values[1] -= amplification;
values[2] -= amplification;
}
private void loadNewSensorData(SensorEvent event) {
final int type = event.sensor.getType();
if (type == Sensor.TYPE_ACCELEROMETER) {
accelGData = event.values.clone();
}
if (type == Sensor.TYPE_MAGNETIC_FIELD) {
magnetData = event.values.clone();
}
if (type == Sensor.TYPE_ORIENTATION) {
orientationData = event.values.clone();
}
}
private void logOutput() {
if (mCount++ > 30) {
mCount = 0;
Log.d("Compass", "yaw0: " + (int) (resultingAngles[0])
+ " pitch1: " + (int) (resultingAngles[1]) + " roll2: "
+ (int) (resultingAngles[2]));
}
}
}
Después de analizar su código anterior, en el método 5 está asignando los datos de orientación de la siguiente manera:
resultingAngles[1] = orientationData[0]; // orientation z axis to y axis
resultingAngles[2] = orientationData[1]; // orientation x axis to z axis
resultingAngles[0] = orientationData[2]; // orientation y axis to x axis
Has hecho la rotación de la manera yzx. Intenta cambiar la orientación ...
Creo que podría ser el problema allí. Por favor revisa y avísame ...
Consulte la documentación de los valores del evento, http://developer.android.com/guide/topics/sensors/sensors_position.html
Gracias por tu trabajo duro ...
No pude probar el código todavía (pero lo haré, se ve muy interesante). Una cosa que me llamó la atención es que parece que no filtra los datos del sensor de ninguna manera.
Las lecturas del sensor son muy ruidosas por naturaleza, especialmente el sensor magnético. Sugeriría que implementes algunos filtros de paso bajo.
Ver mi respuesta anterior para una lectura adicional.
Puede utilizar el motor para Usar sensores con OpenGL. Simplemente consulte el ejemplo https://github.com/nicolasgramlich/AndEngineExamples/tree/GLES2/src/org/andengine/examples/app/cityradar
Sería más fácil probar y depurar el Método 5 usando la función lookAt de GLU: http://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml
Además, como villoren sugirió que es bueno filtrar los datos de su sensor, pero realmente no causaría errores si mueve el dispositivo lentamente. Si quieres probar, uno simple sería el siguiente:
newValue = oldValue * 0.9 + sensorValue * 0.1;
oldValue = newValue;
Tenga en cuenta que si obtiene lecturas consistentemente incorrectas, es posible que tenga que calibrar su brújula moviéndola con sus muñecas en la figura 8.
Difícil explicar esto en palabras; mira este video: http://www.youtube.com/watch?v=sP3d00Hr14o