tiempo real matrices graficos grafico graficas graficar dispersion codigos barras python pandas matplotlib plot

python - real - Gráfico de barras con múltiples etiquetas



grafico de barras python (3)

El siguiente código solo muestra la categoría principal [''uno'', ''dos'', ''tres'', ''cuatro'', ''cinco'', ''seis''] como las etiquetas del eje x. ¿Hay alguna forma de mostrar la subcategoría [''A'', ''B'', ''C'', ''D''] como etiquetas secundarias del eje x?

df = pd.DataFrame(np.random.rand(6, 4), index=[''one'', ''two'', ''three'', ''four'', ''five'', ''six''], columns=pd.Index([''A'', ''B'', ''C'', ''D''], name=''Genus'')).round(2) df.plot(kind=''bar'',figsize=(10,4))


Aquí hay una solución. Puede obtener las posiciones de las barras y configurar algunas etiquetas xtic menores de acuerdo con esto.

import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.DataFrame(np.random.rand(6, 4), index=[''one'', ''two'', ''three'', ''four'', ''five'', ''six''], columns=pd.Index([''A'', ''B'', ''C'', ''D''], name=''Genus'')).round(2) df.plot(kind=''bar'',figsize=(10,4)) ax = plt.gca() pos = [] for bar in ax.patches: pos.append(bar.get_x()+bar.get_width()/2.) ax.set_xticks(pos,minor=True) lab = [] for i in range(len(pos)): l = df.columns.values[i//len(df.index.values)] lab.append(l) ax.set_xticklabels(lab,minor=True) ax.tick_params(axis=''x'', which=''major'', pad=15, size=0) plt.setp(ax.get_xticklabels(), rotation=0) plt.show()


Aquí una posible solución (¡Me divertí bastante!):

df = pd.DataFrame(np.random.rand(6, 4), index=[''one'', ''two'', ''three'', ''four'', ''five'', ''six''], columns=pd.Index([''A'', ''B'', ''C'', ''D''], name=''Genus'')).round(2) ax = df.plot(kind=''bar'',figsize=(10,4), rot = 0) # "Activate" minor ticks ax.minorticks_on() # Get location of the center of each rectangle rects_locs = map(lambda x: x.get_x() +x.get_width()/2., ax.patches) # Set minor ticks there ax.set_xticks(rects_locs, minor = True) # Labels for the rectangles new_ticks = reduce(lambda x, y: x + y, map(lambda x: [x] * df.shape[0], df.columns.tolist())) # Set the labels from matplotlib import ticker ax.xaxis.set_minor_formatter(ticker.FixedFormatter(new_ticks)) #add the custom ticks # Move the category label further from x-axis ax.tick_params(axis=''x'', which=''major'', pad=15) # Remove minor ticks where not necessary ax.tick_params(axis=''x'',which=''both'', top=''off'') ax.tick_params(axis=''y'',which=''both'', left=''off'', right = ''off'')

Esto es lo que obtengo:


import pandas as pd import numpy as np import matplotlib.pyplot as plt def subcategorybar(X, vals,als, width=0.8): n = len(vals) _X = np.arange(len(X)) plt.figure(figsize=(14,9)) for i in range(n): plt.bar(_X - width/2. + i/float(n)*width, vals[i], width=width/float(n), align="edge") for j in _X: plt.text([_X - width/2. + i/float(n)*width][0][j],vals[i][j]+0.01*vals[i] [j],str(als[i][j])) plt.xticks(_X, X) ### data X = [''a'',''b'',''c'',''d'',''f''] A1 = [1,2,3,4,5] A2= [1,7,6,7,8] A3 = [3,5,6,8,9] A4= [4,5,6,7,3] A5 = [5,6,7,8,5] ##labels A1_al = [''da'',''dd'',5,6,3] A2_al = np.random.random_integers(20,size=5) A3_al = np.random.random_integers(20,size=5) A4_al = np.random.random_integers(20,size=5) A5_al = np.random.random_integers(20,size=5) subcategorybar(X, [A1,A2,A3,A4],[A1_al,A2_al,A3_al,A4_al],width=0.8) plt.show()