tutorial serve tensorflow tensorflow-serving

serve - Ninguna variable para guardar error en Tensorflow



tensorflow serve (2)

El error aquí es bastante sutil. En In[8] crea un tf.Graph llamado tf.Graph y lo configura como predeterminado para el with graph.as_default(): . Esto significa que todas las variables se crean en el graph , y si imprime graph.all_variables() debería ver una lista de sus variables.

Sin embargo , tf.Session bloque with antes de crear (i) la tf.Session la tf.Session (ii) la tf.train.Saver . Esto significa que la sesión y el protector se crean en un gráfico diferente (el gráfico global predeterminado tf.Graph que se usa cuando no crea explícitamente uno y lo establece como predeterminado), que no contiene ninguna variable, ni ningún nodo en todos.

Hay al menos dos soluciones:

  1. Como sugiere Yaroslav , puede escribir su programa sin usar el with graph.as_default(): que evita la confusión con múltiples gráficos. Sin embargo, esto puede llevar a colisiones de nombres entre diferentes celdas en su cuaderno de IPython, lo cual es incómodo cuando se usa el tf.train.Saver , ya que usa la propiedad del name de tf.Variable como la clave en el archivo de punto de control.

  2. Puede crear el protector dentro del with graph.as_default(): y crear la tf.Session con un gráfico explícito, de la siguiente manera:

    with graph.as_default(): # [Variable and model creation goes here.] saver = tf.train.Saver() # Gets all variables in `graph`. with tf.Session(graph=graph) as sess: saver.restore(sess) # Do some work with the model....

    Alternativamente, puede crear la tf.Session dentro del with graph.as_default(): en cuyo caso utilizará el graph para todas sus operaciones.

Estoy intentando guardar el modelo y luego reutilizarlo para clasificar mis imágenes, pero desafortunadamente estoy obteniendo errores al restaurar el modelo que he guardado.

El código en el que se ha creado el modelo :

# Deep Learning # ============= # # Assignment 4 # ------------ # In[25]: # These are all the modules we''ll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import numpy as np import tensorflow as tf from six.moves import cPickle as pickle from six.moves import range # In[37]: pickle_file = ''notMNIST.pickle'' with open(pickle_file, ''rb'') as f: save = pickle.load(f) train_dataset = save[''train_dataset''] train_labels = save[''train_labels''] valid_dataset = save[''valid_dataset''] valid_labels = save[''valid_labels''] test_dataset = save[''test_dataset''] test_labels = save[''test_labels''] del save # hint to help gc free up memory print(''Training set'', train_dataset.shape, train_labels.shape) print(''Validation set'', valid_dataset.shape, valid_labels.shape) print(''Test set'', test_dataset.shape, test_labels.shape) print(test_labels) # Reformat into a TensorFlow-friendly shape: # - convolutions need the image data formatted as a cube (width by height by #channels) # - labels as float 1-hot encodings. # In[38]: image_size = 28 num_labels = 10 num_channels = 1 # grayscale import numpy as np def reformat(dataset, labels): dataset = dataset.reshape( (-1, image_size, image_size, num_channels)).astype(np.float32) #print(np.arange(num_labels)) labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) #print(labels[0,:]) print(labels[0]) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print(''Training set'', train_dataset.shape, train_labels.shape) print(''Validation set'', valid_dataset.shape, valid_labels.shape) print(''Test set'', test_dataset.shape, test_labels.shape) #print(labels[0]) # In[39]: def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) # Let''s build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we''ll limit its depth and number of fully connected nodes. # In[47]: batch_size = 16 patch_size = 5 depth = 16 num_hidden = 64 graph = tf.Graph() with graph.as_default(): # Input data. tf_train_dataset = tf.placeholder( tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. layer1_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights") layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases") layer2_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights") layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases") layer3_weights = tf.Variable(tf.truncated_normal( [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases") layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases") layer4_weights = tf.Variable(tf.truncated_normal( [num_hidden, num_labels], stddev=0.1),name = "layer4_weights") layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases") # Model. def model(data): conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding=''SAME'') hidden = tf.nn.relu(conv + layer1_biases) conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding=''SAME'') hidden = tf.nn.relu(conv + layer2_biases) shape = hidden.get_shape().as_list() reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]]) hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) return tf.matmul(hidden, layer4_weights) + layer4_biases # Training computation. logits = model(tf_train_dataset) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) test_prediction = tf.nn.softmax(model(tf_test_dataset)) # In[48]: num_steps = 1001 #saver = tf.train.Saver() with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print(''Initialized'') for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 50 == 0): print(''Minibatch loss at step %d: %f'' % (step, l)) print(''Minibatch accuracy: %.1f%%'' % accuracy(predictions, batch_labels)) print(''Validation accuracy: %.1f%%'' % accuracy( valid_prediction.eval(), valid_labels)) print(''Test accuracy: %.1f%%'' % accuracy(test_prediction.eval(), test_labels)) save_path = tf.train.Saver().save(session, "/tmp/model.ckpt") print("Model saved in file: %s" % save_path)

Todo funciona bien y el modelo se almacena en la carpeta correspondiente.

He creado un archivo de python más en el que he intentado restaurar el modelo pero obteniendo un error allí

# In[1]: from __future__ import print_function import numpy as np import tensorflow as tf from six.moves import cPickle as pickle from six.moves import range # In[3]: image_size = 28 num_labels = 10 num_channels = 1 # grayscale import numpy as np # In[4]: def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) # In[8]: batch_size = 16 patch_size = 5 depth = 16 num_hidden = 64 graph = tf.Graph() with graph.as_default(): ''''''# Input data. tf_train_dataset = tf.placeholder( tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset)'''''' # Variables. layer1_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights") layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases") layer2_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights") layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases") layer3_weights = tf.Variable(tf.truncated_normal( [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases") layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases") layer4_weights = tf.Variable(tf.truncated_normal( [num_hidden, num_labels], stddev=0.1),name = "layer4_weights") layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases") # Model. def model(data): conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding=''SAME'') hidden = tf.nn.relu(conv + layer1_biases) conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding=''SAME'') hidden = tf.nn.relu(conv + layer2_biases) shape = hidden.get_shape().as_list() reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]]) hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) return tf.matmul(hidden, layer4_weights) + layer4_biases ''''''# Training computation. logits = model(tf_train_dataset) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)'''''' # Predictions for the training, validation, and test data. #train_prediction = tf.nn.softmax(logits) #valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) #test_prediction = tf.nn.softmax(model(tf_test_dataset)) # In[17]: #saver = tf.train.Saver() with tf.Session() as sess: # Restore variables from disk. tf.train.Saver().restore(sess, "/tmp/model.ckpt") print("Model restored.") # Do some work with the model

error que estoy recibiendo es:

No hay variables para guardar

Cualquier ayuda sería apreciada


Está creando una nueva sesión en In[17] que borra sus variables. Además, no necesita usar bloques si solo tiene un gráfico predeterminado y una sesión predeterminada, puede hacer algo como esto

sess = tf.InteractiveSession() layer1_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights") tf.train.Saver().restore(sess, "/tmp/model.ckpt")