equivalente de python de la tabla R
frequency table by group in r (6)
Tengo una lista
[[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
Quiero contar la frecuencia de cada elemento en esta lista. Algo como
freq[[12,6]] = 40
En R esto se puede obtener con la función de table
. ¿Hay algo similar en python3?
En mi humilde opinión, pandas ofrece una mejor solución para este problema de "tabulación":
Una dimensión:
my_tab = pd.crosstab(index = df["feature_you_r_interested_in"],
columns="count")
Cuenta de la proporción:
my_tab/my_tab.sum()
Dos dimensiones (con totales):
cross = pd.crosstab(index=df["feat1"],
columns=df["feat2"],
margins=True)
cross
Estoy muy agradecido por este blog:
http://hamelg.blogspot.com.br/2015/11/python-for-data-analysis-part-19_17.html
Pandas tiene una función value_counts()
llamada value_counts()
.
Ejemplo: si su DataFrame tiene una columna con valores como 0 y 1, y desea contar las frecuencias totales para cada uno de ellos, simplemente use esto:
df.colName.value_counts()
Probablemente puedes hacer un conteo de 1-dimensión con la lista de comprensión.
L = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
countey = [tuple(x) for x in L]
freq = {x:countey.count(x) for x in set(countey)}
In [2]: %timeit {x:countey.count(x) for x in set(countey)}
100000 loops, best of 3: 15.2 µs per loop
In [4]: print(freq)
Out[4]: {(0, 6): 19, (6, 0): 20, (12, 0): 33, (12, 6): 28}
In [5]: print(freq[(12,6)])
Out[5]: 28
Supongamos que necesita convertir los datos a un DataFrame pandas de todos modos, para que tenga
L = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
df = pd.DataFrame(L, columns=(''a'', ''b''))
luego puede hacer lo que se sugiere en esta respuesta , usando groupby.size()
:
tab = df.groupby([''a'', ''b'']).size()
tab
ve de la siguiente manera:
In [5]: tab
Out[5]:
a b
0 6 19
6 0 20
12 0 33
6 28
dtype: int64
y puede cambiarse fácilmente a una forma de tabla con unstack()
:
In [6]: tab.unstack()
Out[6]:
b 0 6
a
0 NaN 19.0
6 20.0 NaN
12 33.0 28.0
¡Rellene NaN
s y conviértase a int
en su propio ocio!
Un objeto Counter
de la biblioteca de collections
funcionará así.
from collections import Counter
x = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
# Since the elements passed to a `Counter` must be hashable, we have to change the lists to tuples.
x = [tuple(element) for element in x]
freq = Counter(x)
print freq[(12,6)]
# Result: 28
import pandas
x = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
ps = pandas.Series([tuple(i) for i in x])
counts = ps.value_counts()
print counts
obtendrá el resultado como:
(12, 0) 33
(12, 6) 28
(6, 0) 20
(0, 6) 19
y para [(12,6)]
obtendrá el número exacto, aquí 28
más sobre pandas
, que es un potente kit de herramientas de análisis de datos de Python, puede leer en el documento oficial: http://pandas.pydata.org/pandas-docs/stable/
ACTUALIZAR:
Si el orden no importa, use ordenado: ps = pandas.Series([tuple(sorted(i)) for i in x])
después de ese resultado es:
(0, 6) 39
(0, 12) 33
(6, 12) 28