c concurrency 64-bit lock-free memory-barriers

Uso de la barrera de la memoria en colas sin bloqueo



concurrency 64-bit (1)

Hace poco leí el libro blanco de Paul McKenney de 2010, "Barreras de memoria: una vista de hardware para hackers de software" .

Apreciaría mucho algún comentario / comentario / orientación con respecto a las pequeñas secciones del código C, que figuran a continuación, que implementan la función de puesta en cola de M&S, en particular con respecto a las barreras de la memoria y el compilador.

Este código utiliza pares de puntero-contador para manejar ABA y, por el bien de esta publicación, debe considerarse como escrito para y solo para x86 / x64.

Los comentarios en línea están todos escritos ahora, para este post, y son parte de este post porque expresan lo que actualmente creo que pienso.

Por brevedad, he eliminado el código de aserciones y el relleno de línea de caché en las estructuras, etc.

Actualmente, creo que el código está bastante roto, pero quiero asegurarme de que lo creo por las razones correctas.

#define PAC_SIZE 2 struct lfds_queue_element { struct lfds_queue_element *volatile next[PAC_SIZE]; void *user_data; }; struct lfds_queue_state { struct lfds_queue_element *volatile enqueue[PAC_SIZE]; struct lfds_queue_element *volatile dequeue[PAC_SIZE]; atom_t volatile aba_counter; }; void lfds_queue_internal_dcas_pac_enqueue( struct lfds_queue_state *lqs, struct lfds_queue_element *lqe ) { ALIGN(ALIGN_DOUBLE_POINTER) struct lfds_queue_element *local_lqe[PAC_SIZE], *enqueue[PAC_SIZE], *next[PAC_SIZE]; unsigned char cas_result = 0; unsigned int backoff_iteration = 1; /* TRD : here we have been passed a new element to place into the queue; we initialize it and its next pointer/counter pair */ local_lqe[POINTER] = lqe; local_lqe[COUNTER] = (struct lfds_queue_element *) lfds_abstraction_atomic_increment( &lqs->aba_counter ); local_lqe[POINTER]->next[POINTER] = NULL; local_lqe[POINTER]->next[COUNTER] = (struct lfds_queue_element *) lfds_abstraction_atomic_increment( &lqs->aba_counter ); /* TRD : now, I think there is a issue here, in that these values are by no means yet necessarily visible to other cores however, they only need to be visible once the element has entered the queue, and for that to happen, the contigious double-word CAS must have occurred - and on x86/x64, this carries with it an mfence however, that mfence will only act to empty our local store buffer - it will not cause other cores to flush their invalidation queues, so surely it can all still go horribly wrong? ah, but if all other cores are only accessing these variables using atomic operations, they too will be issuing mfences and so at that point flushing their invalidate queues */ do { enqueue[COUNTER] = lqs->enqueue[COUNTER]; enqueue[POINTER] = lqs->enqueue[POINTER]; next[COUNTER] = enqueue[POINTER]->next[COUNTER]; next[POINTER] = enqueue[POINTER]->next[POINTER]; /* TRD : now, this is interesting we load the enqueue pointer and its next pointer we then (immediately below) check to see they''re unchanged but this check is totally bogus! we could be reading old values from our cache, where our invalidate queue has not been processed, so the initial read contains old data *and* we then go ahead and check from our cache the same old values a second time what''s worse is that I think we could also read the correct values for enqueue but an incorrect (old) value for its next pointer...! so, in either case, we easily mistakenly pass the if() and then enter into code which does things to the queue now, in both cases, the CAS will mfence, which will cause us to see from the data structure the true values, but how much will that help us - we need to look to see what is actually being done the if() checks next[POINTER] is NULL if we have read a NULL for next, then we think the enqueue pointer is correcly placed (it''s not lagging behind) so we don''t need to help; we then try to add our element to the end of the queue now, it may be we have read enqueue properly but next improperly and so we now try to add our element where it will in fact truncate the queue! the CAS however will mfence and so at this point we will actually see the correct value for enqueue-next, and this will prevent that occurring if we look now at the else clause, here we have seen that enqueue->next is not NULL, so the enqueue pointer is out of place and we need to help, which we do by moving it down the queue here though we could have read enqueue correctly but next incorrectly; the CAS will mfence, which will update the cache, but since we''re only comparing the enqueue pointer with our copy of the enqueue pointer, the fact our next pointer is wrong won''t change! so here, we move the enqueue pointer to some old element - which although it might be in the queue (so this would be an inefficiency, you''d have to do a bunch more queue walking to get the enqueue pointer to the final element) it might not be, too! it could in the meantime have been dequeued and that of course would be death */ if( lqs->enqueue[POINTER] == enqueue[POINTER] and lqs->enqueue[COUNTER] == enqueue[COUNTER] ) { if( next[POINTER] == NULL ) { local_lqe[COUNTER] = next[COUNTER] + 1; cas_result = lfds_abstraction_atomic_dcas_with_backoff( (atom_t volatile *) enqueue[POINTER]->next, (atom_t *) local_lqe, (atom_t *) next, &backoff_iteration ); } else { next[COUNTER] = enqueue[COUNTER] + 1; lfds_abstraction_atomic_dcas( (atom_t volatile *) lqs->enqueue, (atom_t *) next, (atom_t *) enqueue ); } } } while( cas_result == 0 ); local_lqe[COUNTER] = enqueue[COUNTER] + 1; lfds_abstraction_atomic_dcas( (atom_t volatile *) lqs->enqueue, (atom_t *) local_lqe, (atom_t *) enqueue ); return; }


CAS es atómico, por lo que si un hilo tiene éxito mientras que otro lo intenta, el otro hilo fallará e intentará nuevamente.

Solo funciona si todos los subprocesos intentan acceder a la misma memoria con el mismo mecanismo, es decir, todos acceden con CAS. Si no lo hacen, las garantías asociadas con CAS (en este caso, las vallas de memoria) salen por la ventana.