manually - legend.position r
Una leyenda compartida para z-scores y p-values ​​correspondientes en un mapa de calor (3)
No es exactamente lo que describió, pero podría poner tanto valores p como z en las mismas etiquetas en un lado de la leyenda:
z.breaks = c(-2,0,2)
p.breaks = pnorm(abs(z.breaks),lower.tail = F)
ggplot(clustered.mat.df,aes(x=condition,y=process)) +
geom_tile(aes(fill = z.score)) +
scale_fill_gradient2("z score (p value)", high="darkred",low="darkblue",
breaks = z.breaks,
labels = paste0(z.breaks, '' (p = '', round(p.breaks,2), '')'') ) +
theme_bw() +
theme(legend.key = element_blank(),
legend.position = ''right'',
panel.border = element_blank(),
strip.background = element_blank(),
axis.text.x=element_text(angle=45,vjust=0.5))
Tengo una matrix
puntuaciones z:
set.seed(1)
z.score.mat <- matrix(rnorm(1000),nrow=100,ncol=10)
que son el resultado de algunos datos biológicos experimentales y una matriz de p-valor correspondiente:
p.val.mat <- pnorm(abs(z.score.mat),lower.tail = F)
Ambos tienen dimnames
idénticos:
rownames(z.score.mat) <- paste("p",1:100,sep="")
colnames(z.score.mat) <- paste("c",1:10,sep="")
rownames(p.val.mat) <- paste("p",1:100,sep="")
colnames(p.val.mat) <- paste("c",1:10,sep="")
Estoy trazando un heatmap
de heatmap
agrupado jerárquicamente de los puntajes z como este:
hc.col <- hclust(dist(z.score.mat))
dd.col <- as.dendrogram(hc.col)
col.ord <- order.dendrogram(dd.col)
hc.row <- hclust(dist(t(z.score.mat)))
dd.row <- as.dendrogram(hc.row)
row.ord <- order.dendrogram(dd.row)
clustered.mat <- z.score.mat[col.ord,row.ord]
clustered.mat.names <- attr(clustered.mat,"dimnames")
clustered.mat.df <- as.data.frame(clustered.mat)
colnames(clustered.mat.df) <- clustered.mat.names[[2]]
clustered.mat.df[,"process"] <- clustered.mat.names[[1]]
clustered.mat.df[,"process"] <- with(clustered.mat.df,factor(clustered.mat.df[,"process"],levels=clustered.mat.df[,"process"],ordered=TRUE))
require(reshape2)
clustered.mat.df <- reshape2::melt(clustered.mat.df,id.vars="process")
colnames(clustered.mat.df)[2:3] <- c("condition","z.score")
clustered.mat.df$p.value <- sapply(1:nrow(clustered.mat.df),function(x) p.val.mat[which(rownames(p.val.mat) == clustered.mat.df$process[x]),which(colnames(p.val.mat) == clustered.mat.df$condition[x])])
lab.legend <- colnames(clustered.mat.df)[3]
lab.row <- colnames(clustered.mat.df)[1]
lab.col <- colnames(clustered.mat.df)[2]
require(ggplot2)
ggplot(clustered.mat.df,aes(x=condition,y=process))+
geom_tile(aes(fill=z.score))+
scale_fill_gradient2(lab.legend,high="darkred",low="darkblue")+
theme_bw()+
theme(legend.key=element_blank(),
legend.position="right",
panel.border=element_blank(),
strip.background=element_blank(),
axis.text.x=element_text(angle=45,vjust=0.5)
)
Mi pregunta es si es posible, y cómo, tener en un lado de la barra de la leyenda el rango z-score (que está actualmente en la mano derecha) y en el otro lado el rango de p-valor correspondiente?
Esto es bastante complicado cuando cambian las dimensiones de la trama, pero obtienes el resultado requerido:
br <- seq(-3, 3, 1)
lab <- round(pnorm(abs(br),lower.tail = F), 3)
p <- ggplot(clustered.mat.df,aes(x=condition,y=process))+
geom_tile(aes(fill=z.score), show.legend = FALSE)+
scale_fill_gradient2(lab.legend, high="darkred", low="darkblue", breaks = br)
p1 <- ggplot(clustered.mat.df,aes(x=condition,y=process))+
geom_tile(aes(fill=z.score))+
scale_fill_gradient2(lab.legend, high="darkred", low="darkblue", breaks = br) +
guides(fill = guide_colorbar(title = '''', label.position = ''right'', barheight = 10))
p2 <- ggplot(clustered.mat.df,aes(x=condition,y=process))+
geom_tile(aes(fill=z.score))+
scale_fill_gradient2(lab.legend, high="darkred", low="darkblue", breaks = br, labels = lab) +
guides(fill = guide_colorbar('''', label.position = ''left'', barheight = 10))
library(cowplot)
l1 <- get_legend(p1)
l2 <- get_legend(p2)
ggdraw() +
draw_plot(p, width = 0.85) +
draw_grob(l1, 0.89, 0, 0.1, 1) +
draw_grob(l2, 0.85, 0, 0.1, 1) +
draw_label(''p z'', 0.88, 0.675, hjust = 0)
Este enfoque utiliza grid
funciones de gtable
y grid
. Toma la leyenda de tu trazado, edita la leyenda para que los valores p aparezcan en el lado izquierdo, luego vuelve a colocar la leyenda editada en el gráfico.
# Your data
set.seed(1)
z.score.mat <- matrix(rnorm(1000),nrow=100,ncol=10)
# which are the result of some biological experimental data, and a corresponding p-value matrix:
p.val.mat <- pnorm(abs(z.score.mat),lower.tail = F)
rownames(z.score.mat) <- paste("p",1:100,sep="")
colnames(z.score.mat) <- paste("c",1:10,sep="")
rownames(p.val.mat) <- paste("p",1:100,sep="")
colnames(p.val.mat) <- paste("c",1:10,sep="")
hc.col <- hclust(dist(z.score.mat))
dd.col <- as.dendrogram(hc.col)
col.ord <- order.dendrogram(dd.col)
hc.row <- hclust(dist(t(z.score.mat)))
dd.row <- as.dendrogram(hc.row)
row.ord <- order.dendrogram(dd.row)
clustered.mat <- z.score.mat[col.ord,row.ord]
clustered.mat.names <- attr(clustered.mat,"dimnames")
clustered.mat.df <- as.data.frame(clustered.mat)
colnames(clustered.mat.df) <- clustered.mat.names[[2]]
clustered.mat.df[,"process"] <- clustered.mat.names[[1]]
clustered.mat.df[,"process"] <- with(clustered.mat.df,factor(clustered.mat.df[,"process"],levels=clustered.mat.df[,"process"],ordered=TRUE))
require(reshape2)
clustered.mat.df <- reshape2::melt(clustered.mat.df,id.vars="process")
colnames(clustered.mat.df)[2:3] <- c("condition","z.score")
clustered.mat.df$p.value <- sapply(1:nrow(clustered.mat.df),function(x) p.val.mat[which(rownames(p.val.mat) == clustered.mat.df$process[x]),which(colnames(p.val.mat) == clustered.mat.df$condition[x])])
lab.legend <- colnames(clustered.mat.df)[3]
lab.row <- colnames(clustered.mat.df)[1]
lab.col <- colnames(clustered.mat.df)[2]
# Your plot
require(ggplot2)
p = ggplot(clustered.mat.df,aes(x=condition,y=process))+
geom_tile(aes(fill=z.score))+
scale_fill_gradient2(lab.legend,high="darkred",low="darkblue") +
theme_bw()+
theme(legend.key=element_blank(),
legend.position="right",
panel.border=element_blank(),
strip.background=element_blank(),
axis.text.x=element_text(angle=45,vjust=0.5))
library(gtable)
library(grid)
# Get the ggplot grob
g = ggplotGrob(p)
# Get the legend
index = which(g$layout$name == "guide-box")
leg = g$grobs[[index]]
# Get the legend labels
# and calculate corresponding p values
z.breaks = as.numeric(leg$grobs[[1]]$grobs[[3]]$label)
p.breaks = as.character(round(pnorm(abs(z.breaks), lower.tail = F), 3))
# Get the width of the longest p.break string, taking account of font and font size
w = lapply(na.omit(p.breaks), function(x) grobWidth(textGrob(x,
gp = gpar(fontsize = leg$grobs[[1]]$grobs[[3]]$gp$fontsize,
fontfamily = leg$grobs[[1]]$grobs[[3]]$gp$fontfamily))))
w = do.call(unit.pmax, w)
w = convertX(w, "mm")
# Add columns to the legend gtable to take p.breaks,
# setting the width of relevant column to w
leg$grobs[[1]] = gtable_add_cols(leg$grobs[[1]], leg$grobs[[1]]$widths[3], 1)
leg$grobs[[1]] = gtable_add_cols(leg$grobs[[1]], w, 1)
# Construct grob containing p.breaks
# Begin with the z.score grob, then make relevant changes
p.values = leg$grobs[[1]]$grobs[[3]]
p.values[c("label", "x", "hjust")] = list(p.breaks, unit(1, "npc"), 1)
# Put the p.values grob into the legend gtable
leg$grobs[[1]] = gtable_add_grob(leg$grobs[[1]], p.values, t=4, l=2,
name = "p.values", clip = "off")
# Put ''p'' and ''z'' labels into the legend gtable
leg$grobs[[1]] = gtable_add_grob(leg$grobs[[1]], list(textGrob("p"), textGrob("z")),
t=2, l=c(2,6), clip = "off")
# Drop the current legend title
leg$grobs[[1]]$grobs[[4]] = nullGrob()
# Put the legend back into the plot,
# and make sure the relevant column is wide enough to take the new legend
g$grobs[[index]] = leg
g$widths[8] = g$widths[8] + sum(leg$grobs[[1]]$widths[2:3])
# Draw the plot
grid.newpage()
grid.draw(g)