resueltos - interpretacion del coeficiente de correlacion
Calcular la correlación para más de dos variables? (5)
Es posible que desee ver Quick-R, que tiene muchos pequeños tutoriales sobre cómo puede hacer estadísticas básicas en R. Por ejemplo, en correlaciones:
Utilizo el siguiente método para calcular una correlación de mi conjunto de datos:
cor( var1, var2, method = "method")
Pero me gusta crear una matriz de correlación de 4 variables diferentes. ¿Cuál es la forma más fácil de hacer esto?
Si desea combinar la matriz con algunas visualizaciones, puedo recomendar (estoy usando el conjunto de datos integrado del iris
):
library(psych)
pairs.panels(iris[1:4]) # select columns 1-4
El Análisis de rendimiento básicamente hace lo mismo pero incluye indicadores de importancia de forma predeterminada.
library(PerformanceAnalytics)
chart.Correlation(iris[1:4])
O esta bonita y sencilla visualización:
library(corrplot)
x <- cor(iris[1:4])
corrplot(x, type="upper", order="hclust")
También puede calcular correlaciones para todas las variables, pero excluir las seleccionadas, por ejemplo:
mtcars <- data.frame(mtcars)
# here we exclude gear and carb variables
cors <- cor(subset(mtcars, select = c(-gear,-carb)))
Además, para calcular la correlación entre cada variable y una columna puede usar sapply()
# sapply effectively calls the corelation function for each column of mtcars and mtcars$mpg
cors2 <- sapply(mtcars, cor, y=mtcars$mpg)
Utilice la misma función ( cor
) en un marco de datos, por ejemplo:
> cor(VADeaths)
Rural Male Rural Female Urban Male Urban Female
Rural Male 1.0000000 0.9979869 0.9841907 0.9934646
Rural Female 0.9979869 1.0000000 0.9739053 0.9867310
Urban Male 0.9841907 0.9739053 1.0000000 0.9918262
Urban Female 0.9934646 0.9867310 0.9918262 1.0000000
O, en un marco de datos que también contiene variables discretas, (también denominadas a veces factores), intente algo como lo siguiente:
> cor(mtcars[,unlist(lapply(mtcars, is.numeric))])
mpg cyl disp hp drat wt qsec vs am gear carb
mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.68117191 -0.8676594 0.41868403 0.6640389 0.59983243 0.4802848 -0.55092507
cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958 -0.59124207 -0.8108118 -0.52260705 -0.4926866 0.52698829
disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799 -0.43369788 -0.7104159 -0.59122704 -0.5555692 0.39497686
hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479 -0.70822339 -0.7230967 -0.24320426 -0.1257043 0.74981247
drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406 0.09120476 0.4402785 0.71271113 0.6996101 -0.09078980
wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000 -0.17471588 -0.5549157 -0.69249526 -0.5832870 0.42760594
qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159 1.00000000 0.7445354 -0.22986086 -0.2126822 -0.65624923
vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 -0.5549157 0.74453544 1.0000000 0.16834512 0.2060233 -0.56960714
am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 -0.6924953 -0.22986086 0.1683451 1.00000000 0.7940588 0.05753435
gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870 -0.21268223 0.2060233 0.79405876 1.0000000 0.27407284
carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059 -0.65624923 -0.5696071 0.05753435 0.2740728 1.00000000
Ver la función corr.test
en el paquete psych
:
> corr.test(mtcars[1:4])
Call:corr.test(x = mtcars[1:4])
Correlation matrix
mpg cyl disp hp
mpg 1.00 -0.85 -0.85 -0.78
cyl -0.85 1.00 0.90 0.83
disp -0.85 0.90 1.00 0.79
hp -0.78 0.83 0.79 1.00
Sample Size
mpg cyl disp hp
mpg 32 32 32 32
cyl 32 32 32 32
disp 32 32 32 32
hp 32 32 32 32
Probability value
mpg cyl disp hp
mpg 0 0 0 0
cyl 0 0 0 0
disp 0 0 0 0
hp 0 0 0 0
Y otro auto-anuncio descarado: https://gist.github.com/887249