example python multithreading pyqt pyqt4 qthread

python - pyqt5 qthread example



Hilo de fondo con QThread en PyQt (6)

Tengo un programa que interactúa con una radio que estoy usando a través de una GUI que escribí en PyQt. Obviamente, una de las funciones principales de la radio es transmitir datos, pero para hacer esto continuamente, tengo que repetir las escrituras, lo que hace que la interfaz se cuelgue. Como nunca he tratado con el subprocesamiento, traté de deshacerme de estos bloqueos usando QCoreApplication.processEvents(). Sin embargo, la radio necesita dormir entre transmisiones, por lo que la GUI aún se cuelga en función de cuánto duren estos sueños.

¿Hay una manera simple de arreglar esto usando QThread? He buscado tutoriales sobre cómo implementar multithreading con PyQt, pero la mayoría de ellos se refieren a la configuración de servidores y están mucho más avanzados de lo que necesito. Honestamente, ni siquiera necesito que mi hilo actualice nada mientras está ejecutándose, solo necesito iniciarlo, transmitirlo en segundo plano y detenerlo.


Creé un pequeño ejemplo que muestra 3 maneras diferentes y simples de tratar con hilos. Espero que te ayude a encontrar el enfoque correcto para tu problema.

import sys import time from PyQt5.QtCore import (QCoreApplication, QObject, QRunnable, QThread, QThreadPool, pyqtSignal) # Subclassing QThread # http://qt-project.org/doc/latest/qthread.html class AThread(QThread): def run(self): count = 0 while count < 5: time.sleep(1) print("A Increasing") count += 1 # Subclassing QObject and using moveToThread # http://blog.qt.digia.com/blog/2007/07/05/qthreads-no-longer-abstract class SomeObject(QObject): finished = pyqtSignal() def long_running(self): count = 0 while count < 5: time.sleep(1) print("B Increasing") count += 1 self.finished.emit() # Using a QRunnable # http://qt-project.org/doc/latest/qthreadpool.html # Note that a QRunnable isn''t a subclass of QObject and therefore does # not provide signals and slots. class Runnable(QRunnable): def run(self): count = 0 app = QCoreApplication.instance() while count < 5: print("C Increasing") time.sleep(1) count += 1 app.quit() def using_q_thread(): app = QCoreApplication([]) thread = AThread() thread.finished.connect(app.exit) thread.start() sys.exit(app.exec_()) def using_move_to_thread(): app = QCoreApplication([]) objThread = QThread() obj = SomeObject() obj.moveToThread(objThread) obj.finished.connect(objThread.quit) objThread.started.connect(obj.long_running) objThread.finished.connect(app.exit) objThread.start() sys.exit(app.exec_()) def using_q_runnable(): app = QCoreApplication([]) runnable = Runnable() QThreadPool.globalInstance().start(runnable) sys.exit(app.exec_()) if __name__ == "__main__": #using_q_thread() #using_move_to_thread() using_q_runnable()


De acuerdo con los desarrolladores de Qt, la subclasificación de QThread es incorrecta (ver http://blog.qt.digia.com/blog/2010/06/17/youre-doing-it-wrong/ ). Pero ese artículo es realmente difícil de entender (además el título es un poco condescendiente). Encontré una publicación de blog mejor que brinda una explicación más detallada sobre por qué debería usar un estilo de enhebrar a otro: http://mayaposch.wordpress.com/2011/11/01/how-to-really-truly-use-qthreads-the-full-explanation/

En mi opinión, probablemente nunca deba subclase hilo con la intención de sobrecargar el método de ejecución. Si bien funciona, básicamente te estás burlando de cómo Qt quiere que trabajes. Además, se perderá cosas como eventos y señales y ranuras seguras para subprocesos. Además, como probablemente verá en la publicación de blog anterior, la forma "correcta" de enhebrar le obliga a escribir un código más comprobable.

Aquí hay un par de ejemplos de cómo aprovechar QThreads en PyQt (publiqué una respuesta separada a continuación que usa QRunnable correctamente e incorpora señales / slots, esa respuesta es mejor si tienes muchas tareas asincrónicas que necesitas para equilibrar la carga) .

import sys from PyQt4 import QtCore from PyQt4 import QtGui from PyQt4.QtCore import Qt # very testable class (hint: you can use mock.Mock for the signals) class Worker(QtCore.QObject): finished = QtCore.pyqtSignal() dataReady = QtCore.pyqtSignal(list, dict) @QtCore.pyqtSlot() def processA(self): print "Worker.processA()" self.finished.emit() @QtCore.pyqtSlot(str, list, list) def processB(self, foo, bar=None, baz=None): print "Worker.processB()" for thing in bar: # lots of processing... self.dataReady.emit([''dummy'', ''data''], {''dummy'': [''data'']}) self.finished.emit() class Thread(QtCore.QThread): """Need for PyQt4 <= 4.6 only""" def __init__(self, parent=None): QtCore.QThread.__init__(self, parent) # this class is solely needed for these two methods, there # appears to be a bug in PyQt 4.6 that requires you to # explicitly call run and start from the subclass in order # to get the thread to actually start an event loop def start(self): QtCore.QThread.start(self) def run(self): QtCore.QThread.run(self) app = QtGui.QApplication(sys.argv) thread = Thread() # no parent! obj = Worker() # no parent! obj.moveToThread(thread) # if you want the thread to stop after the worker is done # you can always call thread.start() again later obj.finished.connect(thread.quit) # one way to do it is to start processing as soon as the thread starts # this is okay in some cases... but makes it harder to send data to # the worker object from the main gui thread. As you can see I''m calling # processA() which takes no arguments thread.started.connect(obj.processA) thread.start() # another way to do it, which is a bit fancier, allows you to talk back and # forth with the object in a thread safe way by communicating through signals # and slots (now that the thread is running I can start calling methods on # the worker object) QtCore.QMetaObject.invokeMethod(obj, ''processB'', Qt.QueuedConnection, QtCore.Q_ARG(str, "Hello World!"), QtCore.Q_ARG(list, ["args", 0, 1]), QtCore.Q_ARG(list, [])) # that looks a bit scary, but its a totally ok thing to do in Qt, # we''re simply using the system that Signals and Slots are built on top of, # the QMetaObject, to make it act like we safely emitted a signal for # the worker thread to pick up when its event loop resumes (so if its doing # a bunch of work you can call this method 10 times and it will just queue # up the calls. Note: PyQt > 4.6 will not allow you to pass in a None # instead of an empty list, it has stricter type checking app.exec_() # Without this you may get weird QThread messages in the shell on exit app.deleteLater()


En PyQt hay muchas opciones para obtener un comportamiento asincrónico. Para cosas que necesitan procesamiento de eventos (es decir, QtNetwork, etc.) debe usar el ejemplo QThread que proporcioné en mi otra respuesta en este hilo. Pero para la gran mayoría de sus necesidades de subprocesamiento, creo que esta solución es muy superior a los otros métodos.

La ventaja de esto es que QThreadPool programa sus instancias de QRunnable como tareas. Esto es similar al patrón de tareas utilizado en Intel TBB. No es tan elegante como me gusta, pero logra un excelente comportamiento asincrónico.

Esto le permite utilizar la mayor parte del poder de enhebrado de Qt en Python a través de QRunnable y aún así aprovechar las señales y las ranuras. Utilizo este mismo código en varias aplicaciones, algunas de las cuales realizan cientos de llamadas REST asíncronas, otras abren archivos o enumeran directorios, y la mejor parte es usar este método, la tarea Qt equilibra los recursos del sistema para mí.

import time from PyQt4 import QtCore from PyQt4 import QtGui from PyQt4.QtCore import Qt def async(method, args, uid, readycb, errorcb=None): """ Asynchronously runs a task :param func method: the method to run in a thread :param object uid: a unique identifier for this task (used for verification) :param slot updatecb: the callback when data is receieved cb(uid, data) :param slot errorcb: the callback when there is an error cb(uid, errmsg) The uid option is useful when the calling code makes multiple async calls and the callbacks need some context about what was sent to the async method. For example, if you use this method to thread a long running database call and the user decides they want to cancel it and start a different one, the first one may complete before you have a chance to cancel the task. In that case, the "readycb" will be called with the cancelled task''s data. The uid can be used to differentiate those two calls (ie. using the sql query). :returns: Request instance """ request = Request(method, args, uid, readycb, errorcb) QtCore.QThreadPool.globalInstance().start(request) return request class Request(QtCore.QRunnable): """ A Qt object that represents an asynchronous task :param func method: the method to call :param list args: list of arguments to pass to method :param object uid: a unique identifier (used for verification) :param slot readycb: the callback used when data is receieved :param slot errorcb: the callback used when there is an error The uid param is sent to your error and update callbacks as the first argument. It''s there to verify the data you''re returning After created it should be used by invoking: .. code-block:: python task = Request(...) QtCore.QThreadPool.globalInstance().start(task) """ INSTANCES = [] FINISHED = [] def __init__(self, method, args, uid, readycb, errorcb=None): super(Request, self).__init__() self.setAutoDelete(True) self.cancelled = False self.method = method self.args = args self.uid = uid self.dataReady = readycb self.dataError = errorcb Request.INSTANCES.append(self) # release all of the finished tasks Request.FINISHED = [] def run(self): """ Method automatically called by Qt when the runnable is ready to run. This will run in a separate thread. """ # this allows us to "cancel" queued tasks if needed, should be done # on shutdown to prevent the app from hanging if self.cancelled: self.cleanup() return # runs in a separate thread, for proper async signal/slot behavior # the object that emits the signals must be created in this thread. # Its not possible to run grabber.moveToThread(QThread.currentThread()) # so to get this QObject to properly exhibit asynchronous # signal and slot behavior it needs to live in the thread that # we''re running in, creating the object from within this thread # is an easy way to do that. grabber = Requester() grabber.Loaded.connect(self.dataReady, Qt.QueuedConnection) if self.dataError is not None: grabber.Error.connect(self.dataError, Qt.QueuedConnection) try: result = self.method(*self.args) if self.cancelled: # cleanup happens in ''finally'' statement return grabber.Loaded.emit(self.uid, result) except Exception as error: if self.cancelled: # cleanup happens in ''finally'' statement return grabber.Error.emit(self.uid, unicode(error)) finally: # this will run even if one of the above return statements # is executed inside of the try/except statement see: # https://docs.python.org/2.7/tutorial/errors.html#defining-clean-up-actions self.cleanup(grabber) def cleanup(self, grabber=None): # remove references to any object or method for proper ref counting self.method = None self.args = None self.uid = None self.dataReady = None self.dataError = None if grabber is not None: grabber.deleteLater() # make sure this python obj gets cleaned up self.remove() def remove(self): try: Request.INSTANCES.remove(self) # when the next request is created, it will clean this one up # this will help us avoid this object being cleaned up # when it''s still being used Request.FINISHED.append(self) except ValueError: # there might be a race condition on shutdown, when shutdown() # is called while the thread is still running and the instance # has already been removed from the list return @staticmethod def shutdown(): for inst in Request.INSTANCES: inst.cancelled = True Request.INSTANCES = [] Request.FINISHED = [] class Requester(QtCore.QObject): """ A simple object designed to be used in a separate thread to allow for asynchronous data fetching """ # # Signals # Error = QtCore.pyqtSignal(object, unicode) """ Emitted if the fetch fails for any reason :param unicode uid: an id to identify this request :param unicode error: the error message """ Loaded = QtCore.pyqtSignal(object, object) """ Emitted whenever data comes back successfully :param unicode uid: an id to identify this request :param list data: the json list returned from the GET """ NetworkConnectionError = QtCore.pyqtSignal(unicode) """ Emitted when the task fails due to a network connection error :param unicode message: network connection error message """ def __init__(self, parent=None): super(Requester, self).__init__(parent) class ExampleObject(QtCore.QObject): def __init__(self, parent=None): super(ExampleObject, self).__init__(parent) self.uid = 0 self.request = None def ready_callback(self, uid, result): if uid != self.uid: return print "Data ready from %s: %s" % (uid, result) def error_callback(self, uid, error): if uid != self.uid: return print "Data error from %s: %s" % (uid, error) def fetch(self): if self.request is not None: # cancel any pending requests self.request.cancelled = True self.request = None self.uid += 1 self.request = async(slow_method, ["arg1", "arg2"], self.uid, self.ready_callback, self.error_callback) def slow_method(arg1, arg2): print "Starting slow method" time.sleep(1) return arg1 + arg2 if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) obj = ExampleObject() dialog = QtGui.QDialog() layout = QtGui.QVBoxLayout(dialog) button = QtGui.QPushButton("Generate", dialog) progress = QtGui.QProgressBar(dialog) progress.setRange(0, 0) layout.addWidget(button) layout.addWidget(progress) button.clicked.connect(obj.fetch) dialog.show() app.exec_() app.deleteLater() # avoids some QThread messages in the shell on exit # cancel all running tasks avoid QThread/QTimer error messages # on exit Request.shutdown()

Al salir de la aplicación, deseará asegurarse de cancelar todas las tareas o la aplicación se bloqueará hasta que se complete cada tarea programada.


En base a los métodos de Objetos del trabajador mencionados en otras respuestas, decidí ver si podía ampliar la solución para invocar más hilos, en este caso el número óptimo que la máquina puede ejecutar y hacer girar a varios trabajadores con tiempos de finalización indeterminados. Para hacer esto, todavía necesito subclase QThread, pero solo para asignar un número de hilo y ''reimplementar'' las señales ''finalizadas'' e ''iniciadas'' para incluir su número de hilo.

Me he centrado bastante en las señales entre la GUI principal, los hilos y los trabajadores.

De manera similar, las respuestas de otros han sido un esfuerzo para señalar que no se crió el QThread, pero no creo que esto sea una preocupación real. Sin embargo, mi código también tiene cuidado de destruir los objetos QThread.

Sin embargo, no pude convertir los objetos del trabajador en padres, por lo que parece deseable enviarles la señal deleteLater (), ya sea cuando la función de subproceso finaliza o se destruye la GUI. He tenido mi propio código colgado por no hacer esto.

Otra mejora que sentí que era necesaria fue volver a implementar el evento Close de la GUI (QWidget) de modo que se ordenara a los subprocesos que salgan y luego la GUI esperará hasta que se terminen todos los subprocesos. Cuando jugué con algunas de las otras respuestas a esta pregunta, obtuve QThread errores destruidos.

Tal vez sea útil para otros. Ciertamente me pareció un ejercicio útil. Quizás otros sabrán una mejor manera para que un hilo anuncie su identidad.

#!/usr/bin/env python3 #coding:utf-8 # Author: --<> # Purpose: To demonstrate creation of multiple threads and identify the receipt of thread results # Created: 19/12/15 import sys from PyQt4.QtCore import QThread, pyqtSlot, pyqtSignal from PyQt4.QtGui import QApplication, QLabel, QWidget, QGridLayout import sys import worker class Thread(QThread): #make new signals to be able to return an id for the thread startedx = pyqtSignal(int) finishedx = pyqtSignal(int) def __init__(self,i,parent=None): super().__init__(parent) self.idd = i self.started.connect(self.starttt) self.finished.connect(self.finisheddd) @pyqtSlot() def starttt(self): print(''started signal from thread emitted'') self.startedx.emit(self.idd) @pyqtSlot() def finisheddd(self): print(''finished signal from thread emitted'') self.finishedx.emit(self.idd) class Form(QWidget): def __init__(self): super().__init__() self.initUI() self.worker={} self.threadx={} self.i=0 i=0 #Establish the maximum number of threads the machine can optimally handle #Generally relates to the number of processors self.threadtest = QThread(self) self.idealthreadcount = self.threadtest.idealThreadCount() print("This machine can handle {} threads optimally".format(self.idealthreadcount)) while i <self.idealthreadcount: self.setupThread(i) i+=1 i=0 while i<self.idealthreadcount: self.startThread(i) i+=1 print("Main Gui running in thread {}.".format(self.thread())) def setupThread(self,i): self.worker[i]= worker.Worker(i) # no parent! #print("Worker object runningt in thread {} prior to movetothread".format(self.worker[i].thread()) ) self.threadx[i] = Thread(i,parent=self) # if parent isn''t specified then need to be careful to destroy thread self.threadx[i].setObjectName("python thread{}"+str(i)) #print("Thread object runningt in thread {} prior to movetothread".format(self.threadx[i].thread()) ) self.threadx[i].startedx.connect(self.threadStarted) self.threadx[i].finishedx.connect(self.threadFinished) self.worker[i].finished.connect(self.workerFinished) self.worker[i].intReady.connect(self.workerResultReady) #The next line is optional, you may want to start the threads again without having to create all the code again. self.worker[i].finished.connect(self.threadx[i].quit) self.threadx[i].started.connect(self.worker[i].procCounter) self.destroyed.connect(self.threadx[i].deleteLater) self.destroyed.connect(self.worker[i].deleteLater) #This is the key code that actually get the worker code onto another processor or thread. self.worker[i].moveToThread(self.threadx[i]) def startThread(self,i): self.threadx[i].start() @pyqtSlot(int) def threadStarted(self,i): print(''Thread {} started''.format(i)) print("Thread priority is {}".format(self.threadx[i].priority())) @pyqtSlot(int) def threadFinished(self,i): print(''Thread {} finished''.format(i)) @pyqtSlot(int) def threadTerminated(self,i): print("Thread {} terminated".format(i)) @pyqtSlot(int,int) def workerResultReady(self,j,i): print(''Worker {} result returned''.format(i)) if i ==0: self.label1.setText("{}".format(j)) if i ==1: self.label2.setText("{}".format(j)) if i ==2: self.label3.setText("{}".format(j)) if i ==3: self.label4.setText("{}".format(j)) #print(''Thread {} has started''.format(self.threadx[i].currentThreadId())) @pyqtSlot(int) def workerFinished(self,i): print(''Worker {} finished''.format(i)) def initUI(self): self.label1 = QLabel("0") self.label2= QLabel("0") self.label3= QLabel("0") self.label4 = QLabel("0") grid = QGridLayout(self) self.setLayout(grid) grid.addWidget(self.label1,0,0) grid.addWidget(self.label2,0,1) grid.addWidget(self.label3,0,2) grid.addWidget(self.label4,0,3) #Layout parents the self.labels self.move(300, 150) self.setGeometry(0,0,300,300) #self.size(300,300) self.setWindowTitle(''thread test'') self.show() def closeEvent(self, event): print(''Closing'') #this tells the threads to stop running i=0 while i <self.idealthreadcount: self.threadx[i].quit() i+=1 #this ensures window cannot be closed until the threads have finished. i=0 while i <self.idealthreadcount: self.threadx[i].wait() i+=1 event.accept() if __name__==''__main__'': app = QApplication(sys.argv) form = Form() sys.exit(app.exec_())

Y el código de trabajador a continuación

#!/usr/bin/env python3 #coding:utf-8 # Author: --<> # Purpose: # Created: 19/12/15 import sys import unittest from PyQt4.QtCore import QThread, QObject, pyqtSignal, pyqtSlot import time import random class Worker(QObject): finished = pyqtSignal(int) intReady = pyqtSignal(int,int) def __init__(self, i=0): ''''''__init__ is called while the worker is still in the Gui thread. Do not put slow or CPU intensive code in the __init__ method'''''' super().__init__() self.idd = i @pyqtSlot() def procCounter(self): # This slot takes no params for j in range(1, 10): random_time = random.weibullvariate(1,2) time.sleep(random_time) self.intReady.emit(j,self.idd) print(''Worker {0} in thread {1}''.format(self.idd, self.thread().idd)) self.finished.emit(self.idd) if __name__==''__main__'': unittest.main()


Muy buen ejemplo de Matt, arreglé el error tipográfico y también pyqt4.8 es común ahora, así que también eliminé la clase ficticia y agregué un ejemplo para la señal de dataReady

# -*- coding: utf-8 -*- import sys from PyQt4 import QtCore, QtGui from PyQt4.QtCore import Qt # very testable class (hint: you can use mock.Mock for the signals) class Worker(QtCore.QObject): finished = QtCore.pyqtSignal() dataReady = QtCore.pyqtSignal(list, dict) @QtCore.pyqtSlot() def processA(self): print "Worker.processA()" self.finished.emit() @QtCore.pyqtSlot(str, list, list) def processB(self, foo, bar=None, baz=None): print "Worker.processB()" for thing in bar: # lots of processing... self.dataReady.emit([''dummy'', ''data''], {''dummy'': [''data'']}) self.finished.emit() def onDataReady(aList, aDict): print ''onDataReady'' print repr(aList) print repr(aDict) app = QtGui.QApplication(sys.argv) thread = QtCore.QThread() # no parent! obj = Worker() # no parent! obj.dataReady.connect(onDataReady) obj.moveToThread(thread) # if you want the thread to stop after the worker is done # you can always call thread.start() again later obj.finished.connect(thread.quit) # one way to do it is to start processing as soon as the thread starts # this is okay in some cases... but makes it harder to send data to # the worker object from the main gui thread. As you can see I''m calling # processA() which takes no arguments thread.started.connect(obj.processA) thread.finished.connect(app.exit) thread.start() # another way to do it, which is a bit fancier, allows you to talk back and # forth with the object in a thread safe way by communicating through signals # and slots (now that the thread is running I can start calling methods on # the worker object) QtCore.QMetaObject.invokeMethod(obj, ''processB'', Qt.QueuedConnection, QtCore.Q_ARG(str, "Hello World!"), QtCore.Q_ARG(list, ["args", 0, 1]), QtCore.Q_ARG(list, [])) # that looks a bit scary, but its a totally ok thing to do in Qt, # we''re simply using the system that Signals and Slots are built on top of, # the QMetaObject, to make it act like we safely emitted a signal for # the worker thread to pick up when its event loop resumes (so if its doing # a bunch of work you can call this method 10 times and it will just queue # up the calls. Note: PyQt > 4.6 will not allow you to pass in a None # instead of an empty list, it has stricter type checking app.exec_()


Tome esta respuesta actualizada para PyQt5, python 3.4

Use esto como un patrón para iniciar un trabajador que no tome datos y devuelva datos, ya que están disponibles para el formulario.

1 - La clase de trabajador se hace más pequeña y se coloca en su propio archivo worker.py para una fácil memorización y reutilización de software independiente.

2 - El archivo main.py es el archivo que define la clase de formulario GUI

3 - El objeto de hilo no está subclasificado.

4 - Tanto el objeto thread como el objeto worker pertenecen al objeto Form

5 - Los pasos del procedimiento están dentro de los comentarios.

# worker.py from PyQt5.QtCore import QThread, QObject, pyqtSignal, pyqtSlot import time class Worker(QObject): finished = pyqtSignal() intReady = pyqtSignal(int) @pyqtSlot() def procCounter(self): # A slot takes no params for i in range(1, 100): time.sleep(1) self.intReady.emit(i) self.finished.emit()

Y el archivo principal es:

#main.py from PyQt5.QtCore import QThread from PyQt5.QtWidgets import QApplication, QLabel, QWidget, QGridLayout import sys import worker class Form(QWidget): def __init__(self): super().__init__() self.label = QLabel("0") # 1 - create Worker and Thread inside the Form self.obj = worker.Worker() # no parent! self.thread = QThread() # no parent! # 2 - Connect Worker`s Signals to Form method slots to post data. self.obj.intReady.connect(self.onIntReady) # 3 - Move the Worker object to the Thread object self.obj.moveToThread(self.thread) # 4 - Connect Worker Signals to the Thread slots self.obj.finished.connect(self.thread.quit) # 5 - Connect Thread started signal to Worker operational slot method self.thread.started.connect(self.obj.procCounter) # * - Thread finished signal will close the app if you want! #self.thread.finished.connect(app.exit) # 6 - Start the thread self.thread.start() # 7 - Start the form self.initUI() def initUI(self): grid = QGridLayout() self.setLayout(grid) grid.addWidget(self.label,0,0) self.move(300, 150) self.setWindowTitle(''thread test'') self.show() def onIntReady(self, i): self.label.setText("{}".format(i)) #print(i) app = QApplication(sys.argv) form = Form() sys.exit(app.exec_())