python - matrices - NumPy k-th índices diagonales
matrices diagonales python (4)
Utilice numpy.diag(v, k=0)
Donde k establece la ubicación diagonal desde el centro.
es decir. { k=0
: "centro predeterminado", k=(-1)
: "1 fila a la izquierda del centro", k=1
: "1 fila a la derecha del centro}
Luego realice la aritmética como normalmente lo esperaría.
Echa un vistazo a los documentos aquí: np.diag() .
Ejemplos:
In [3]: np.diag(np.arange(6), k=0)
Out[3]:
array([[0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 2, 0, 0, 0],
[0, 0, 0, 3, 0, 0],
[0, 0, 0, 0, 4, 0],
[0, 0, 0, 0, 0, 5]])
In [4]: np.diag(np.arange(6), k=1)
Out[4]:
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 2, 0, 0, 0],
[0, 0, 0, 0, 3, 0, 0],
[0, 0, 0, 0, 0, 4, 0],
[0, 0, 0, 0, 0, 0, 5],
[0, 0, 0, 0, 0, 0, 0]])
In [5]: np.diag(np.arange(6), k=-1)
Out[5]:
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 0, 2, 0, 0, 0, 0],
[0, 0, 0, 3, 0, 0, 0],
[0, 0, 0, 0, 4, 0, 0],
[0, 0, 0, 0, 0, 5, 0]])
Me gustaría hacer aritmética con la diagonal K-th de un numpy.array. Necesito esos índices. Por ejemplo, algo como:
>>> a = numpy.eye(2)
>>> a[numpy.diag_indices(a, k=-1)] = 5
>>> a
array([[ 1., 0.],
[ 5., 1.]])
Desafortunadamente, diag_indices solo devuelve los índices que comprenden la diagonal principal, por lo que en este momento estoy haciendo:
a += numpy.diag([5], -1)
Pero eso no parece tan bonito ni robusto. :-)
¿Hay alguna manera, en números, de obtener índices para otra cosa que no sea la diagonal principal?
Aquí hay una manera:
- Crear arrays de valores de índice.
- Obtenga los valores de índice daigonal que desee.
- ¡Eso es! :)
Me gusta esto:
>>> import numpy as np
>>> rows, cols = np.indices((3,3))
>>> row_vals = np.diag(rows, k=-1)
>>> col_vals = np.diag(cols, k=-1)
>>> z = np.zeros((3,3))
>>> z[row_vals, col_vals]=1
>>> z
array([[ 0., 0., 0.],
[ 1., 0., 0.],
[ 0., 1., 0.]])
Los índices de la diagonal k ''th de a
se pueden calcular con
def kth_diag_indices(a, k):
rowidx, colidx = np.diag_indices_from(a)
colidx = colidx.copy() # rowidx and colidx share the same buffer
if k > 0:
colidx += k
else:
rowidx -= k
k = np.abs(k)
return rowidx[:-k], colidx[:-k]
Manifestación:
>>> a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
>>> a[kth_diag_indices(a, 1)]
array([ 1, 7, 13, 19])
>>> a[kth_diag_indices(a, 2)]
array([ 2, 8, 14])
>>> a[kth_diag_indices(a, -1)]
array([ 5, 11, 17, 23])
Un poco tarde, pero esta versión también funciona para k = 0
(y no altera las matrices, por lo que no necesita hacer una copia).
def kth_diag_indices(a, k):
rows, cols = np.diag_indices_from(a)
if k < 0:
return rows[-k:], cols[:k]
elif k > 0:
return rows[:-k], cols[k:]
else:
return rows, cols