python - index - Compute*rolling*máximo drawdown de pandas Series
pandas series example (4)
Es bastante fácil escribir una función que calcula la reducción máxima de una serie de tiempo. Se necesita un poco de pensamiento para escribirlo en tiempo O(n)
lugar de tiempo O(n^2)
. Pero no es tan malo. Esto funcionará:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def max_dd(ser):
max2here = pd.expanding_max(ser)
dd2here = ser - max2here
return dd2here.min()
Vamos a configurar una serie breve para jugar para probarlo:
np.random.seed(0)
n = 100
s = pd.Series(np.random.randn(n).cumsum())
s.plot()
plt.show()
Como se esperaba, max_dd(s)
termina mostrando algo alrededor de -17.6. Bien, grandioso, grandioso. Ahora digamos que estoy interesado en calcular la reducción progresiva de esta serie. Es decir, para cada paso, quiero calcular la reducción máxima de la subserie anterior de una longitud específica. Esto es fácil de hacer usando pd.rolling_apply
. Funciona así:
rolling_dd = pd.rolling_apply(s, 10, max_dd, min_periods=0)
df = pd.concat([s, rolling_dd], axis=1)
df.columns = [''s'', ''rol_dd_10'']
df.plot()
Esto funciona perfectamente. Pero se siente muy lento. ¿Hay un algoritmo particularmente hábil en pandas u otro conjunto de herramientas para hacer esto rápido? Intenté escribir algo a medida: realiza un seguimiento de todo tipo de datos intermedios (ubicaciones de los máximos observados, ubicaciones de las reducciones encontradas previamente) para reducir muchos cálculos redundantes. Se ahorra tiempo, pero no mucho, y no tanto como debería ser posible.
Creo que se debe a todos los bucles de Python / Numpy / Pandas. Pero actualmente no tengo suficiente fluidez en Cython para saber realmente cómo comenzar a atacar esto desde ese ángulo. Esperaba que alguien hubiera intentado esto antes. O, quizás, que alguien pueda querer echar un vistazo a mi código "hecho a mano" y estar dispuesto a ayudarme a convertirlo en Cython.
Edición: para cualquier persona que quiera revisar todas las funciones mencionadas aquí (¡y algunas más!), Eche un vistazo al cuaderno de iPython en: http://nbviewer.ipython.org/gist/8one6/8506455
Muestra cómo se relacionan algunos de los enfoques de este problema, comprueba que dan los mismos resultados y muestra sus tiempos de ejecución en datos de varios tamaños.
Si alguien está interesado, el algoritmo "a medida" que rolling_dd_custom
en mi publicación es rolling_dd_custom
. Creo que podría ser una solución muy rápida si se implementa en Cython.
Aquí hay una versión numpy de la función de reducción máxima de rodadura. windowed_view
es una envoltura de una función de una línea que usa numpy.lib.stride_tricks.as_strided
para hacer una vista de la ventana 2d eficiente de la memoria de la matriz 1d (código completo a continuación). Una vez que tenemos esta vista de ventana, el cálculo es básicamente el mismo que su max_dd
, pero se escribe para una matriz numpy y se aplica a lo largo del segundo eje (es decir, axis=1
).
def rolling_max_dd(x, window_size, min_periods=1):
"""Compute the rolling maximum drawdown of `x`.
`x` must be a 1d numpy array.
`min_periods` should satisfy `1 <= min_periods <= window_size`.
Returns an 1d array with length `len(x) - min_periods + 1`.
"""
if min_periods < window_size:
pad = np.empty(window_size - min_periods)
pad.fill(x[0])
x = np.concatenate((pad, x))
y = windowed_view(x, window_size)
running_max_y = np.maximum.accumulate(y, axis=1)
dd = y - running_max_y
return dd.min(axis=1)
Aquí hay un script completo que demuestra la función:
import numpy as np
from numpy.lib.stride_tricks import as_strided
import pandas as pd
import matplotlib.pyplot as plt
def windowed_view(x, window_size):
"""Creat a 2d windowed view of a 1d array.
`x` must be a 1d numpy array.
`numpy.lib.stride_tricks.as_strided` is used to create the view.
The data is not copied.
Example:
>>> x = np.array([1, 2, 3, 4, 5, 6])
>>> windowed_view(x, 3)
array([[1, 2, 3],
[2, 3, 4],
[3, 4, 5],
[4, 5, 6]])
"""
y = as_strided(x, shape=(x.size - window_size + 1, window_size),
strides=(x.strides[0], x.strides[0]))
return y
def rolling_max_dd(x, window_size, min_periods=1):
"""Compute the rolling maximum drawdown of `x`.
`x` must be a 1d numpy array.
`min_periods` should satisfy `1 <= min_periods <= window_size`.
Returns an 1d array with length `len(x) - min_periods + 1`.
"""
if min_periods < window_size:
pad = np.empty(window_size - min_periods)
pad.fill(x[0])
x = np.concatenate((pad, x))
y = windowed_view(x, window_size)
running_max_y = np.maximum.accumulate(y, axis=1)
dd = y - running_max_y
return dd.min(axis=1)
def max_dd(ser):
max2here = pd.expanding_max(ser)
dd2here = ser - max2here
return dd2here.min()
if __name__ == "__main__":
np.random.seed(0)
n = 100
s = pd.Series(np.random.randn(n).cumsum())
window_length = 10
rolling_dd = pd.rolling_apply(s, window_length, max_dd, min_periods=0)
df = pd.concat([s, rolling_dd], axis=1)
df.columns = [''s'', ''rol_dd_%d'' % window_length]
df.plot(linewidth=3, alpha=0.4)
my_rmdd = rolling_max_dd(s.values, window_length, min_periods=1)
plt.plot(my_rmdd, ''g.'')
plt.show()
La gráfica muestra las curvas generadas por su código. Los puntos verdes se calculan mediante rolling_max_dd
.
Comparación de tiempo, con n = 10000
y window_length = 500
:
In [2]: %timeit rolling_dd = pd.rolling_apply(s, window_length, max_dd, min_periods=0)
1 loops, best of 3: 247 ms per loop
In [3]: %timeit my_rmdd = rolling_max_dd(s.values, window_length, min_periods=1)
10 loops, best of 3: 38.2 ms per loop
rolling_max_dd
es aproximadamente 6.5 veces más rápido. La aceleración es mejor para longitudes de ventana más pequeñas. Por ejemplo, con window_length = 200
, es casi 13 veces más rápido.
Para manejar las NA, puede preprocesar la Series
utilizando el método fillna
antes de pasar la matriz a rolling_max_dd
.
En aras de la posteridad y de la integridad, esto es lo que encontré en Cython. MemoryViews aceleró materialmente las cosas. Había un poco de trabajo que hacer para asegurarse de que había escrito correctamente todo (lo siento, nuevo para los lenguajes de tipo c). Pero al final creo que funciona muy bien. Para los casos de uso típicos, el aumento de velocidad frente a Python normal fue ~ 100x o ~ 150x. La función a la que llamar es cy_rolling_dd_custom_mv
donde el primer argumento ( ser
) debe ser una matriz numpy 1-d y el segundo argumento ( window
) debe ser un entero positivo. La función devuelve una vista de memoria numpy, que funciona lo suficientemente bien en la mayoría de los casos. Puede llamar explícitamente a np.array(result)
si necesita obtener una buena matriz de la salida:
import numpy as np
cimport numpy as np
cimport cython
DTYPE = np.float64
ctypedef np.float64_t DTYPE_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
cpdef tuple cy_dd_custom_mv(double[:] ser):
cdef double running_global_peak = ser[0]
cdef double min_since_global_peak = ser[0]
cdef double running_max_dd = 0
cdef long running_global_peak_id = 0
cdef long running_max_dd_peak_id = 0
cdef long running_max_dd_trough_id = 0
cdef long i
cdef double val
for i in xrange(ser.shape[0]):
val = ser[i]
if val >= running_global_peak:
running_global_peak = val
running_global_peak_id = i
min_since_global_peak = val
if val < min_since_global_peak:
min_since_global_peak = val
if val - running_global_peak <= running_max_dd:
running_max_dd = val - running_global_peak
running_max_dd_peak_id = running_global_peak_id
running_max_dd_trough_id = i
return (running_max_dd, running_max_dd_peak_id, running_max_dd_trough_id, running_global_peak_id)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def cy_rolling_dd_custom_mv(double[:] ser, long window):
cdef double[:, :] result
result = np.zeros((ser.shape[0], 4))
cdef double running_global_peak = ser[0]
cdef double min_since_global_peak = ser[0]
cdef double running_max_dd = 0
cdef long running_global_peak_id = 0
cdef long running_max_dd_peak_id = 0
cdef long running_max_dd_trough_id = 0
cdef long i
cdef double val
cdef int prob_1
cdef int prob_2
cdef tuple intermed
cdef long newthing
for i in xrange(ser.shape[0]):
val = ser[i]
if i < window:
if val >= running_global_peak:
running_global_peak = val
running_global_peak_id = i
min_since_global_peak = val
if val < min_since_global_peak:
min_since_global_peak = val
if val - running_global_peak <= running_max_dd:
running_max_dd = val - running_global_peak
running_max_dd_peak_id = running_global_peak_id
running_max_dd_trough_id = i
result[i, 0] = <double>running_max_dd
result[i, 1] = <double>running_max_dd_peak_id
result[i, 2] = <double>running_max_dd_trough_id
result[i, 3] = <double>running_global_peak_id
else:
prob_1 = 1 if result[i-1, 3] <= float(i - window) else 0
prob_2 = 1 if result[i-1, 1] <= float(i - window) else 0
if prob_1 or prob_2:
intermed = cy_dd_custom_mv(ser[i-window+1:i+1])
result[i, 0] = <double>intermed[0]
result[i, 1] = <double>(intermed[1] + i - window + 1)
result[i, 2] = <double>(intermed[2] + i - window + 1)
result[i, 3] = <double>(intermed[3] + i - window + 1)
else:
newthing = <long>(int(result[i-1, 3]))
result[i, 3] = i if ser[i] >= ser[newthing] else result[i-1, 3]
if val - ser[newthing] <= result[i-1, 0]:
result[i, 0] = <double>(val - ser[newthing])
result[i, 1] = <double>result[i-1, 3]
result[i, 2] = <double>i
else:
result[i, 0] = <double>result[i-1, 0]
result[i, 1] = <double>result[i-1, 1]
result[i, 2] = <double>result[i-1, 2]
cdef double[:] finalresult = result[:, 0]
return finalresult
Hola gente. Este es un problema bastante complejo si desea resolverlo de una manera computacionalmente eficiente para una ventana móvil. He seguido adelante y he escrito una solución a esto en C #. Quiero compartir esto ya que el esfuerzo requerido para replicar este trabajo es bastante alto.
Primero, aquí están los resultados:
Aquí tomamos una implementación de reducción simple y volvemos a calcular la ventana completa cada vez.
test1 - simple drawdown test with 30 period rolling window. run 100 times.
total seconds 0.8060461
test2 - simple drawdown test with 60 period rolling window. run 100 times.
total seconds 1.416081
test3 - simple drawdown test with 180 period rolling window. run 100 times.
total seconds 3.6602093
test4 - simple drawdown test with 360 period rolling window. run 100 times.
total seconds 6.696383
test5 - simple drawdown test with 500 period rolling window. run 100 times.
total seconds 8.9815137
Aquí nos comparamos con los resultados generados por mi eficiente algoritmo de ventana rodante donde solo se agrega la última observación y luego lo hace mágico
test6 - running drawdown test with 30 period rolling window. run 100 times.
total seconds 0.2940168
test7 - running drawdown test with 60 period rolling window. run 100 times.
total seconds 0.3050175
test8 - running drawdown test with 180 period rolling window. run 100 times.
total seconds 0.3780216
test9 - running drawdown test with 360 period rolling window. run 100 times.
total seconds 0.4560261
test10 - running drawdown test with 500 period rolling window. run 100 times.
total seconds 0.5050288
En la ventana de 500 períodos. Estamos logrando una mejora de 20: 1 en el tiempo de cálculo.
Aquí está el código de la clase de reducción simple utilizada para las comparaciones:
public class SimpleDrawDown
{
public double Peak { get; set; }
public double Trough { get; set; }
public double MaxDrawDown { get; set; }
public SimpleDrawDown()
{
Peak = double.NegativeInfinity;
Trough = double.PositiveInfinity;
MaxDrawDown = 0;
}
public void Calculate(double newValue)
{
if (newValue > Peak)
{
Peak = newValue;
Trough = Peak;
}
else if (newValue < Trough)
{
Trough = newValue;
var tmpDrawDown = Peak - Trough;
if (tmpDrawDown > MaxDrawDown)
MaxDrawDown = tmpDrawDown;
}
}
}
Y aquí está el código para la implementación eficiente completa. Esperemos que los comentarios del código tengan sentido.
internal class DrawDown
{
int _n;
int _startIndex, _endIndex, _troughIndex;
public int Count { get; set; }
LinkedList<double> _values;
public double Peak { get; set; }
public double Trough { get; set; }
public bool SkipMoveBackDoubleCalc { get; set; }
public int PeakIndex
{
get
{
return _startIndex;
}
}
public int TroughIndex
{
get
{
return _troughIndex;
}
}
//peak to trough return
public double DrawDownAmount
{
get
{
return Peak - Trough;
}
}
/// <summary>
///
/// </summary>
/// <param name="n">max window for drawdown period</param>
/// <param name="peak">drawdown peak i.e. start value</param>
public DrawDown(int n, double peak)
{
_n = n - 1;
_startIndex = _n;
_endIndex = _n;
_troughIndex = _n;
Count = 1;
_values = new LinkedList<double>();
_values.AddLast(peak);
Peak = peak;
Trough = peak;
}
/// <summary>
/// adds a new observation on the drawdown curve
/// </summary>
/// <param name="newValue"></param>
public void Add(double newValue)
{
//push the start of this drawdown backwards
//_startIndex--;
//the end of the drawdown is the current period end
_endIndex = _n;
//the total periods increases with a new observation
Count++;
//track what all point values are in the drawdown curve
_values.AddLast(newValue);
//update if we have a new trough
if (newValue < Trough)
{
Trough = newValue;
_troughIndex = _endIndex;
}
}
/// <summary>
/// Shift this Drawdown backwards in the observation window
/// </summary>
/// <param name="trackingNewPeak">whether we are already tracking a new peak or not</param>
/// <returns>a new drawdown to track if a new peak becomes active</returns>
public DrawDown MoveBack(bool trackingNewPeak, bool recomputeWindow = true)
{
if (!SkipMoveBackDoubleCalc)
{
_startIndex--;
_endIndex--;
_troughIndex--;
if (recomputeWindow)
return RecomputeDrawdownToWindowSize(trackingNewPeak);
}
else
SkipMoveBackDoubleCalc = false;
return null;
}
private DrawDown RecomputeDrawdownToWindowSize(bool trackingNewPeak)
{
//the start of this drawdown has fallen out of the start of our observation window, so we have to recalculate the peak of the drawdown
if (_startIndex < 0)
{
Peak = double.NegativeInfinity;
_values.RemoveFirst();
Count--;
//there is the possibility now that there is a higher peak, within the current drawdown curve, than our first observation
//when we find it, remove all data points prior to this point
//the new peak must be before the current known trough point
int iObservation = 0, iNewPeak = 0, iNewTrough = _troughIndex, iTmpNewPeak = 0, iTempTrough = 0;
double newDrawDown = 0, tmpPeak = 0, tmpTrough = double.NegativeInfinity;
DrawDown newDrawDownObj = null;
foreach (var pointOnDrawDown in _values)
{
if (iObservation < _troughIndex)
{
if (pointOnDrawDown > Peak)
{
iNewPeak = iObservation;
Peak = pointOnDrawDown;
}
}
else if (iObservation == _troughIndex)
{
newDrawDown = Peak - Trough;
tmpPeak = Peak;
}
else
{
//now continue on through the remaining points, to determine if there is a nested-drawdown, that is now larger than the newDrawDown
//e.g. higher peak beyond _troughIndex, with higher trough than that at _troughIndex, but where new peak minus new trough is > newDrawDown
if (pointOnDrawDown > tmpPeak)
{
tmpPeak = pointOnDrawDown;
tmpTrough = tmpPeak;
iTmpNewPeak = iObservation;
//we need a new drawdown object, as we have a new higher peak
if (!trackingNewPeak)
newDrawDownObj = new DrawDown(_n + 1, tmpPeak);
}
else
{
if (!trackingNewPeak && newDrawDownObj != null)
{
newDrawDownObj.MoveBack(true, false); //recomputeWindow is irrelevant for this as it will never fall before period 0 in this usage scenario
newDrawDownObj.Add(pointOnDrawDown); //keep tracking this new drawdown peak
}
if (pointOnDrawDown < tmpTrough)
{
tmpTrough = pointOnDrawDown;
iTempTrough = iObservation;
var tmpDrawDown = tmpPeak - tmpTrough;
if (tmpDrawDown > newDrawDown)
{
newDrawDown = tmpDrawDown;
iNewPeak = iTmpNewPeak;
iNewTrough = iTempTrough;
Peak = tmpPeak;
Trough = tmpTrough;
}
}
}
}
iObservation++;
}
_startIndex = iNewPeak; //our drawdown now starts from here in our observation window
_troughIndex = iNewTrough;
for (int i = 0; i < _startIndex; i++)
{
_values.RemoveFirst(); //get rid of the data points prior to this new drawdown peak
Count--;
}
return newDrawDownObj;
}
return null;
}
}
public class RunningDrawDown
{
int _n;
List<DrawDown> _drawdownObjs;
DrawDown _currentDrawDown;
DrawDown _maxDrawDownObj;
/// <summary>
/// The Peak of the MaxDrawDown
/// </summary>
public double DrawDownPeak
{
get
{
if (_maxDrawDownObj == null) return double.NegativeInfinity;
return _maxDrawDownObj.Peak;
}
}
/// <summary>
/// The Trough of the Max DrawDown
/// </summary>
public double DrawDownTrough
{
get
{
if (_maxDrawDownObj == null) return double.PositiveInfinity;
return _maxDrawDownObj.Trough;
}
}
/// <summary>
/// The Size of the DrawDown - Peak to Trough
/// </summary>
public double DrawDown
{
get
{
if (_maxDrawDownObj == null) return 0;
return _maxDrawDownObj.DrawDownAmount;
}
}
/// <summary>
/// The Index into the Window that the Peak of the DrawDown is seen
/// </summary>
public int PeakIndex
{
get
{
if (_maxDrawDownObj == null) return 0;
return _maxDrawDownObj.PeakIndex;
}
}
/// <summary>
/// The Index into the Window that the Trough of the DrawDown is seen
/// </summary>
public int TroughIndex
{
get
{
if (_maxDrawDownObj == null) return 0;
return _maxDrawDownObj.TroughIndex;
}
}
/// <summary>
/// Creates a running window for the calculation of MaxDrawDown within the window
/// </summary>
/// <param name="n">the number of periods within the window</param>
public RunningDrawDown(int n)
{
_n = n;
_currentDrawDown = null;
_drawdownObjs = new List<DrawDown>();
}
/// <summary>
/// The new value to add onto the end of the current window (the first value will drop off)
/// </summary>
/// <param name="newValue">the new point on the curve</param>
public void Calculate(double newValue)
{
if (double.IsNaN(newValue)) return;
if (_currentDrawDown == null)
{
var drawDown = new DrawDown(_n, newValue);
_currentDrawDown = drawDown;
_maxDrawDownObj = drawDown;
}
else
{
//shift current drawdown back one. and if the first observation falling outside the window means we encounter a new peak after the current trough, we start tracking a new drawdown
var drawDownFromNewPeak = _currentDrawDown.MoveBack(false);
//this is a special case, where a new lower peak (now the highest) is created due to the drop of of the pre-existing highest peak, and we are not yet tracking a new peak
if (drawDownFromNewPeak != null)
{
_drawdownObjs.Add(_currentDrawDown); //record this drawdown into our running drawdowns list)
_currentDrawDown.SkipMoveBackDoubleCalc = true; //MoveBack() is calculated again below in _drawdownObjs collection, so we make sure that is skipped this first time
_currentDrawDown = drawDownFromNewPeak;
_currentDrawDown.MoveBack(true);
}
if (newValue > _currentDrawDown.Peak)
{
//we need a new drawdown object, as we have a new higher peak
var drawDown = new DrawDown(_n, newValue);
//do we have an existing drawdown object, and does it have more than 1 observation
if (_currentDrawDown.Count > 1)
{
_drawdownObjs.Add(_currentDrawDown); //record this drawdown into our running drawdowns list)
_currentDrawDown.SkipMoveBackDoubleCalc = true; //MoveBack() is calculated again below in _drawdownObjs collection, so we make sure that is skipped this first time
}
_currentDrawDown = drawDown;
}
else
{
//add the new observation to the current drawdown
_currentDrawDown.Add(newValue);
}
}
//does our new drawdown surpass any of the previous drawdowns?
//if so, we can drop the old drawdowns, as for the remainer of the old drawdowns lives in our lookup window, they will be smaller than the new one
var newDrawDown = _currentDrawDown.DrawDownAmount;
_maxDrawDownObj = _currentDrawDown;
var maxDrawDown = newDrawDown;
var keepDrawDownsList = new List<DrawDown>();
foreach (var drawDownObj in _drawdownObjs)
{
drawDownObj.MoveBack(true);
if (drawDownObj.DrawDownAmount > newDrawDown)
{
keepDrawDownsList.Add(drawDownObj);
}
//also calculate our max drawdown here
if (drawDownObj.DrawDownAmount > maxDrawDown)
{
maxDrawDown = drawDownObj.DrawDownAmount;
_maxDrawDownObj = drawDownObj;
}
}
_drawdownObjs = keepDrawDownsList;
}
}
Ejemplo de uso:
RunningDrawDown rd = new RunningDrawDown(500);
foreach (var input in data)
{
rd.Calculate(input);
Console.WriteLine(string.Format("max draw {0:0.00000}, peak {1:0.00000}, trough {2:0.00000}, drawstart {3:0.00000}, drawend {4:0.00000}",
rd.DrawDown, rd.DrawDownPeak, rd.DrawDownTrough, rd.PeakIndex, rd.TroughIndex));
}
# BEGIN: TRADEWAVE MOVING AVERAGE CROSSOVER EXAMPLE
THRESHOLD = 0.005
INTERVAL = 43200
SHORT = 10
LONG = 90
def initialize():
storage.invested = storage.get(''invested'', False)
def tick():
short_term = data(interval=INTERVAL).btc_usd.ma(SHORT)
long_term = data(interval=INTERVAL).btc_usd.ma(LONG)
diff = 100 * (short_term - long_term) / ((short_term + long_term) / 2)
if diff >= THRESHOLD and not storage.invested:
buy(pairs.btc_usd)
storage.invested = True
elif diff <= -THRESHOLD and storage.invested:
sell(pairs.btc_usd)
storage.invested = False
plot(''short_term'', short_term)
plot(''long_term'', long_term)
# END: TRADEWAVE MOVING AVERAGE CROSSOVER EXAMPLE
##############################################################
##############################################################
# BEGIN MAX DRAW DOWN by litepresence
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
dd()
ROLLING = 30 # days
def dd():
dd, storage.max_dd = max_dd(0)
bnh_dd, storage.max_bnh_dd = bnh_max_dd(0)
rolling_dd, storage.max_rolling_dd = max_dd(
ROLLING*86400/info.interval)
rolling_bnh_dd, storage.max_rolling_bnh_dd = bnh_max_dd(
ROLLING*86400/info.interval)
plot(''dd'', dd, secondary=True)
plot(''bnh_dd'', bnh_dd, secondary=True)
plot(''rolling_dd'', rolling_dd, secondary=True)
plot(''rolling_bnh_dd'', rolling_bnh_dd, secondary=True)
plot(''zero'', 0, secondary=True)
if info.tick == 0:
plot(''dd_floor'', -200, secondary=True)
def max_dd(rolling):
port_value = float(portfolio.usd+portfolio.btc*data.btc_usd.price)
max_value = ''max_value_'' + str(rolling)
values_since_max = ''values_since_max_'' + str(rolling)
max_dd = ''max_dd_'' + str(rolling)
storage[max_value] = storage.get(max_value, [port_value])
storage[values_since_max] = storage.get(values_since_max, [port_value])
storage[max_dd] = storage.get(max_dd, [0])
storage[max_value].append(port_value)
if port_value > max(storage[max_value]):
storage[values_since_max] = [port_value]
else:
storage[values_since_max].append(port_value)
storage[max_value] = storage[max_value][-rolling:]
storage[values_since_max] = storage[values_since_max][-rolling:]
dd = -100*(max(storage[max_value]) - storage[values_since_max][-1]
)/max(storage[max_value])
storage[max_dd].append(float(dd))
storage[max_dd] = storage[max_dd][-rolling:]
max_dd = min(storage[max_dd])
return (dd, max_dd)
def bnh_max_dd(rolling):
coin = data.btc_usd.price
bnh_max_value = ''bnh_max_value_'' + str(rolling)
bnh_values_since_max = ''bnh_values_since_max_'' + str(rolling)
bnh_max_dd = ''bnh_max_dd_'' + str(rolling)
storage[bnh_max_value] = storage.get(bnh_max_value, [coin])
storage[bnh_values_since_max] = storage.get(bnh_values_since_max, [coin])
storage[bnh_max_dd] = storage.get(bnh_max_dd, [0])
storage[bnh_max_value].append(coin)
if coin > max(storage[bnh_max_value]):
storage[bnh_values_since_max] = [coin]
else:
storage[bnh_values_since_max].append(coin)
storage[bnh_max_value] = storage[bnh_max_value][-rolling:]
storage[bnh_values_since_max] = storage[bnh_values_since_max][-rolling:]
bnh_dd = -100*(max(storage[bnh_max_value]) - storage[bnh_values_since_max][-1]
)/max(storage[bnh_max_value])
storage[bnh_max_dd].append(float(bnh_dd))
storage[bnh_max_dd] = storage[bnh_max_dd][-rolling:]
bnh_max_dd = min(storage[bnh_max_dd])
return (bnh_dd, bnh_max_dd)
def stop():
log(''MAX DD......: %.2f pct'' % storage.max_dd)
log(''R MAX DD....: %.2f pct'' % storage.max_rolling_dd)
log(''MAX BNH DD..: %.2f pct'' % storage.max_bnh_dd)
log(''R MAX BNH DD: %.2f pct'' % storage.max_rolling_bnh_dd)
[2015-03-04 00:00:00] MAX DD......: -67.94 pct
[2015-03-04 00:00:00] R MAX DD....: -4.93 pct
[2015-03-04 00:00:00] MAX BNH DD..: -82.88 pct
[2015-03-04 00:00:00] R MAX BNH DD: -26.38 pct
- Dibujar hacia abajo
- Max Drawn Down
- Compra y Mantén Sorteo
- Comprar y Mantener Max Draw Down
- Rolling Draw Down
- Rolling Max Drawn Down
- Rolling comprar y mantener dibujar
- Rolling Comprar y Mantener Max Draw Down
Sin pandas, cython, ni dependencias numpy. Todos los cálculos a través de listas simples.
Las definiciones son reutilizables para múltiples tamaños de ventanas rodantes en el mismo script. Deberá editar la entrada de la serie para su plataforma, ya que está diseñada para el comercio de Bitcoin en tradewave.net