python - usar - unirse o fusionarse con sobrescribir en pandas
stackoverflowespañol (2)
Quiero realizar una operación join / merge / append en un dataframe con índice de fecha y hora.
Digamos que tengo df1
y quiero agregar df2
a él. df2
puede tener menos o más columnas e índices superpuestos. Para todas las filas donde los índices coinciden, si df2
tiene la misma columna que df1
, quiero que los valores de df1
se sobrescriban con los de df2
.
¿Cómo puedo obtener el resultado deseado?
Para una fusión como esta, el método de update
de un DataFrame es útil.
Tomando los ejemplos de la documentación :
import pandas as pd
import numpy as np
df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],
[np.nan, 7., np.nan]])
df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]],
index=[1, 2])
Datos antes de la update
:
>>> df1
0 1 2
0 NaN 3.0 5.0
1 -4.6 NaN NaN
2 NaN 7.0 NaN
>>>
>>> df2
0 1 2
1 -42.6 NaN -8.2
2 -5.0 1.6 4.0
df1
con datos de df2
:
df1.update(df2)
Datos después de la actualización:
>>> df1
0 1 2
0 NaN 3.0 5.0
1 -42.6 NaN -8.2
2 -5.0 1.6 4.0
Observaciones:
- Es importante notar que esta es una operación "en su lugar", que modifica el DataFrame que llama a la
update
.
¿Qué tal: df2.combine_first(df1)
?
In [33]: df2
Out[33]:
A B C D
2000-01-03 0.638998 1.277361 0.193649 0.345063
2000-01-04 -0.816756 -1.711666 -1.155077 -0.678726
2000-01-05 0.435507 -0.025162 -1.112890 0.324111
2000-01-06 -0.210756 -1.027164 0.036664 0.884715
2000-01-07 -0.821631 -0.700394 -0.706505 1.193341
2000-01-10 1.015447 -0.909930 0.027548 0.258471
2000-01-11 -0.497239 -0.979071 -0.461560 0.447598
In [34]: df1
Out[34]:
A B C
2000-01-03 2.288863 0.188175 -0.040928
2000-01-04 0.159107 -0.666861 -0.551628
2000-01-05 -0.356838 -0.231036 -1.211446
2000-01-06 -0.866475 1.113018 -0.001483
2000-01-07 0.303269 0.021034 0.471715
2000-01-10 1.149815 0.686696 -1.230991
2000-01-11 -1.296118 -0.172950 -0.603887
2000-01-12 -1.034574 -0.523238 0.626968
2000-01-13 -0.193280 1.857499 -0.046383
2000-01-14 -1.043492 -0.820525 0.868685
In [35]: df2.comb
df2.combine df2.combineAdd df2.combine_first df2.combineMult
In [35]: df2.combine_first(df1)
Out[35]:
A B C D
2000-01-03 0.638998 1.277361 0.193649 0.345063
2000-01-04 -0.816756 -1.711666 -1.155077 -0.678726
2000-01-05 0.435507 -0.025162 -1.112890 0.324111
2000-01-06 -0.210756 -1.027164 0.036664 0.884715
2000-01-07 -0.821631 -0.700394 -0.706505 1.193341
2000-01-10 1.015447 -0.909930 0.027548 0.258471
2000-01-11 -0.497239 -0.979071 -0.461560 0.447598
2000-01-12 -1.034574 -0.523238 0.626968 NaN
2000-01-13 -0.193280 1.857499 -0.046383 NaN
2000-01-14 -1.043492 -0.820525 0.868685 NaN
Tenga en cuenta que toma los valores de df1
para los índices que no se superponen con df2
. Si esto no hace exactamente lo que desea, estaría dispuesto a mejorar esta función / agregarle opciones.