python - kerasclassifier - keras tutorial
La precisiĆ³n de Keras no cambia. (5)
Después de un examen, encontré que el problema era la información en sí misma. Estaba muy sucio ya que en la misma entrada tenía 2 salidas diferentes, creando confusión. Después de borrar los datos, mi precisión aumenta a% 69. Aún no es suficiente para ser bueno, pero al menos ahora puedo trabajar desde aquí ahora que los datos son claros.
Usé el siguiente código para probar:
import os
import sys
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.core import Dense, Activation, Dropout, Flatten
from keras.utils import np_utils
sys.path.append("./")
import AudioProcessing as ap
import ImageTools as it
# input image dimensions
img_rows, img_cols = 28, 28
dim = 1
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
nb_conv = 3
batch_size = 128
nb_classes = 2
nb_epoch = 200
for i in range(20):
print "/n"
## Generate spectrograms if necessary
if(len(os.listdir("./AudioNormalPathalogicClassification/Image")) > 0):
print "Audio files are already processed. Skipping..."
else:
# Read the result csv
df = pd.read_csv(''./AudioNormalPathalogicClassification/Result/AudioNormalPathalogicClassification_result.csv'', header = None, encoding = "utf-8")
df.columns = ["RegionName","Filepath","IsNormal"]
bool_mapping = {True : 1, False : 0}
for col in df:
if(col == "RegionName" or col == "Filepath"):
a = 3
else:
df[col] = df[col].map(bool_mapping)
region_names = df.iloc[:,0].values
filepaths = df.iloc[:,1].values
y = df.iloc[:,2].values
#Generate spectrograms and make a new CSV file
print "Generating spectrograms for the audio files..."
result = ap.audio_2_image(filepaths, region_names, y, "./AudioNormalPathalogicClassification/Image/", ".png",(img_rows,img_cols))
df = pd.DataFrame(data = result)
df.to_csv("NormalVsPathalogic.csv",header= False, index = False, encoding = "utf-8")
# Load images into memory
print "Loading images into memory..."
df = pd.read_csv(''NormalVsPathalogic.csv'', header = None, encoding = "utf-8")
y = df.iloc[:,0].values
y = np_utils.to_categorical(y, nb_classes)
y = np.asarray(y)
X = df.iloc[:,1:].values
X = np.asarray(X)
X = X.reshape(X.shape[0], dim, img_rows, img_cols)
X = X.astype("float32")
X /= 255
print X.shape
model = Sequential()
model.add(Convolution2D(64, nb_conv, nb_conv,
border_mode=''valid'',
input_shape=(1, img_rows, img_cols)))
model.add(Activation(''relu''))
model.add(Convolution2D(32, nb_conv, nb_conv))
model.add(Activation(''relu''))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation(''relu''))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation(''softmax''))
model.compile(loss=''categorical_crossentropy'', optimizer=''adadelta'')
print model.summary()
model.fit(X, y, batch_size = batch_size, nb_epoch = nb_epoch, show_accuracy = True, verbose = 1)
Tengo unos pocos miles de archivos de audio y quiero clasificarlos usando Keras y Theano. Hasta ahora, generé un espectrograma de 28x28 (más grande probablemente sea mejor, pero solo estoy tratando de que el algoritmo funcione en este punto) de cada archivo de audio y lea la imagen en una matriz. Así que al final obtengo esta gran matriz de imágenes para alimentar a la red para la clasificación de imágenes.
En un tutorial encontré este código de clasificación mnist:
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense
from keras.utils import np_utils
batch_size = 128
nb_classes = 10
nb_epochs = 2
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype("float32")
X_test = X_test.astype("float32")
X_train /= 255
X_test /= 255
print(X_train.shape[0], "train samples")
print(X_test.shape[0], "test samples")
y_train = np_utils.to_categorical(y_train, nb_classes)
y_test = np_utils.to_categorical(y_test, nb_classes)
model = Sequential()
model.add(Dense(output_dim = 100, input_dim = 784, activation= "relu"))
model.add(Dense(output_dim = 200, activation = "relu"))
model.add(Dense(output_dim = 200, activation = "relu"))
model.add(Dense(output_dim = nb_classes, activation = "softmax"))
model.compile(optimizer = "adam", loss = "categorical_crossentropy")
model.fit(X_train, y_train, batch_size = batch_size, nb_epoch = nb_epochs, show_accuracy = True, verbose = 2, validation_data = (X_test, y_test))
score = model.evaluate(X_test, y_test, show_accuracy = True, verbose = 0)
print("Test score: ", score[0])
print("Test accuracy: ", score[1])
Este código se ejecuta, y obtengo el resultado como se esperaba:
(60000L, ''train samples'')
(10000L, ''test samples'')
Train on 60000 samples, validate on 10000 samples
Epoch 1/2
2s - loss: 0.2988 - acc: 0.9131 - val_loss: 0.1314 - val_acc: 0.9607
Epoch 2/2
2s - loss: 0.1144 - acc: 0.9651 - val_loss: 0.0995 - val_acc: 0.9673
(''Test score: '', 0.099454972004890438)
(''Test accuracy: '', 0.96730000000000005)
Hasta este punto, todo funciona perfectamente, sin embargo, cuando aplico el algoritmo anterior a mi conjunto de datos, la precisión se atasca.
Mi código es el siguiente:
import os
import pandas as pd
from sklearn.cross_validation import train_test_split
from keras.models import Sequential
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.core import Dense, Activation, Dropout, Flatten
from keras.utils import np_utils
import AudioProcessing as ap
import ImageTools as it
batch_size = 128
nb_classes = 2
nb_epoch = 10
for i in range(20):
print "/n"
# Generate spectrograms if necessary
if(len(os.listdir("./AudioNormalPathalogicClassification/Image")) > 0):
print "Audio files are already processed. Skipping..."
else:
print "Generating spectrograms for the audio files..."
ap.audio_2_image("./AudioNormalPathalogicClassification/Audio/","./AudioNormalPathalogicClassification/Image/",".wav",".png",(28,28))
# Read the result csv
df = pd.read_csv(''./AudioNormalPathalogicClassification/Result/result.csv'', header = None)
df.columns = ["RegionName","IsNormal"]
bool_mapping = {True : 1, False : 0}
nb_classes = 2
for col in df:
if(col == "RegionName"):
a = 3
else:
df[col] = df[col].map(bool_mapping)
y = df.iloc[:,1:].values
y = np_utils.to_categorical(y, nb_classes)
# Load images into memory
print "Loading images into memory..."
X = it.load_images("./AudioNormalPathalogicClassification/Image/",".png")
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0)
X_train = X_train.reshape(X_train.shape[0], 784)
X_test = X_test.reshape(X_test.shape[0], 784)
X_train = X_train.astype("float32")
X_test = X_test.astype("float32")
X_train /= 255
X_test /= 255
print("X_train shape: " + str(X_train.shape))
print(str(X_train.shape[0]) + " train samples")
print(str(X_test.shape[0]) + " test samples")
model = Sequential()
model.add(Dense(output_dim = 100, input_dim = 784, activation= "relu"))
model.add(Dense(output_dim = 200, activation = "relu"))
model.add(Dense(output_dim = 200, activation = "relu"))
model.add(Dense(output_dim = nb_classes, activation = "softmax"))
model.compile(loss = "categorical_crossentropy", optimizer = "adam")
print model.summary()
model.fit(X_train, y_train, batch_size = batch_size, nb_epoch = nb_epoch, show_accuracy = True, verbose = 1, validation_data = (X_test, y_test))
score = model.evaluate(X_test, y_test, show_accuracy = True, verbose = 1)
print("Test score: ", score[0])
print("Test accuracy: ", score[1])
AudioProcessing.py
import os
import scipy as sp
import scipy.io.wavfile as wav
import matplotlib.pylab as pylab
import Image
def save_spectrogram_scipy(source_filename, destination_filename, size):
dt = 0.0005
NFFT = 1024
Fs = int(1.0/dt)
fs, audio = wav.read(source_filename)
if(len(audio.shape) >= 2):
audio = sp.mean(audio, axis = 1)
fig = pylab.figure()
ax = pylab.Axes(fig, [0,0,1,1])
ax.set_axis_off()
fig.add_axes(ax)
pylab.specgram(audio, NFFT = NFFT, Fs = Fs, noverlap = 900, cmap="gray")
pylab.savefig(destination_filename)
img = Image.open(destination_filename).convert("L")
img = img.resize(size)
img.save(destination_filename)
pylab.clf()
del img
def audio_2_image(source_directory, destination_directory, audio_extension, image_extension, size):
nb_files = len(os.listdir(source_directory));
count = 0
for file in os.listdir(source_directory):
if file.endswith(audio_extension):
destinationName = file[:-4]
save_spectrogram_scipy(source_directory + file, destination_directory + destinationName + image_extension, size)
count += 1
print ("Generating spectrogram for files " + str(count) + " / " + str(nb_files) + ".")
ImageTools.py
import os
import numpy as np
import matplotlib.image as mpimg
def load_images(source_directory, image_extension):
image_matrix = []
nb_files = len(os.listdir(source_directory));
count = 0
for file in os.listdir(source_directory):
if file.endswith(image_extension):
with open(source_directory + file,"r+b") as f:
img = mpimg.imread(f)
img = img.flatten()
image_matrix.append(img)
del img
count += 1
#print ("File " + str(count) + " / " + str(nb_files) + " loaded.")
return np.asarray(image_matrix)
Así que ejecuto el código anterior y recibo:
Audio files are already processed. Skipping...
Loading images into memory...
X_train shape: (2394L, 784L)
2394 train samples
1027 test samples
--------------------------------------------------------------------------------
Initial input shape: (None, 784)
--------------------------------------------------------------------------------
Layer (name) Output Shape Param #
--------------------------------------------------------------------------------
Dense (dense) (None, 100) 78500
Dense (dense) (None, 200) 20200
Dense (dense) (None, 200) 40200
Dense (dense) (None, 2) 402
--------------------------------------------------------------------------------
Total params: 139302
--------------------------------------------------------------------------------
None
Train on 2394 samples, validate on 1027 samples
Epoch 1/10
2394/2394 [==============================] - 0s - loss: 0.6898 - acc: 0.5455 - val_loss: 0.6835 - val_acc: 0.5716
Epoch 2/10
2394/2394 [==============================] - 0s - loss: 0.6879 - acc: 0.5522 - val_loss: 0.6901 - val_acc: 0.5716
Epoch 3/10
2394/2394 [==============================] - 0s - loss: 0.6880 - acc: 0.5522 - val_loss: 0.6842 - val_acc: 0.5716
Epoch 4/10
2394/2394 [==============================] - 0s - loss: 0.6883 - acc: 0.5522 - val_loss: 0.6829 - val_acc: 0.5716
Epoch 5/10
2394/2394 [==============================] - 0s - loss: 0.6885 - acc: 0.5522 - val_loss: 0.6836 - val_acc: 0.5716
Epoch 6/10
2394/2394 [==============================] - 0s - loss: 0.6887 - acc: 0.5522 - val_loss: 0.6832 - val_acc: 0.5716
Epoch 7/10
2394/2394 [==============================] - 0s - loss: 0.6882 - acc: 0.5522 - val_loss: 0.6859 - val_acc: 0.5716
Epoch 8/10
2394/2394 [==============================] - 0s - loss: 0.6882 - acc: 0.5522 - val_loss: 0.6849 - val_acc: 0.5716
Epoch 9/10
2394/2394 [==============================] - 0s - loss: 0.6885 - acc: 0.5522 - val_loss: 0.6836 - val_acc: 0.5716
Epoch 10/10
2394/2394 [==============================] - 0s - loss: 0.6877 - acc: 0.5522 - val_loss: 0.6849 - val_acc: 0.5716
1027/1027 [==============================] - 0s
(''Test score: '', 0.68490593621422047)
(''Test accuracy: '', 0.57156767283349563)
Intenté cambiar la red, agregar más épocas, pero siempre obtengo el mismo resultado sin importar qué. No entiendo por qué estoy obteniendo el mismo resultado.
Cualquier ayuda sería apreciada. Gracias.
Edición: Encontré un error donde los valores de píxeles no se leían correctamente. Fijé el archivo ImageTools.py a continuación como:
import os
import numpy as np
from scipy.misc import imread
def load_images(source_directory, image_extension):
image_matrix = []
nb_files = len(os.listdir(source_directory));
count = 0
for file in os.listdir(source_directory):
if file.endswith(image_extension):
with open(source_directory + file,"r+b") as f:
img = imread(f)
img = img.flatten()
image_matrix.append(img)
del img
count += 1
#print ("File " + str(count) + " / " + str(nb_files) + " loaded.")
return np.asarray(image_matrix)
Ahora realmente obtengo valores de píxeles en escala de grises de 0 a 255, así que ahora mi división por 255 tiene sentido. Sin embargo, todavía tengo el mismo resultado.
Echa un vistazo a este
sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile( loss = "categorical_crossentropy",
optimizer = sgd,
metrics=[''accuracy'']
)
Echa un vistazo a la documentation
Tuve mejores resultados con MNIST
La razón más probable es que el optimizador no se adapte a su conjunto de datos. Aquí hay una lista de los optimizadores de Keras de la documentación.
Te recomiendo que primero pruebes SGD con los valores de parámetros por defecto. Si aún no funciona, divida la tasa de aprendizaje por 10. Haga eso varias veces si es necesario. Si su tasa de aprendizaje llega a 1e-6 y aún no funciona, entonces tiene otro problema.
En resumen, reemplace esta línea:
model.compile(loss = "categorical_crossentropy", optimizer = "adam")
con este:
from keras.optimizers import SGD
opt = SGD(lr=0.01)
model.compile(loss = "categorical_crossentropy", optimizer = opt)
y cambia la velocidad de aprendizaje unas cuantas veces si no funciona.
Si fuera el problema, debería ver que la pérdida disminuye después de unas pocas épocas.
Me enfrenté a un problema similar. Una codificación en caliente de la variable de destino utilizando nputils en Keras, resolvió el problema de la precisión y la pérdida de validación se atascó. El uso de ponderaciones para equilibrar las clases de destino mejoró aún más el rendimiento.
Solución:
from keras.utils.np.utils import to_categorical
y_train = to_categorical(y_train)
y_val = to_categorical(y_val)
Si la precisión no cambia, significa que el optimizador ha encontrado un mínimo local para la pérdida. Esto puede ser un mínimo indeseable. Un mínimo local común es predecir siempre la clase con la mayor cantidad de puntos de datos. Debe utilizar ponderación en las clases para evitar este mínimo.
from sklearn.utils import compute_class_weight
classWeight = compute_class_weight(''balanced'', outputLabels, outputs)
classWeight = dict(enumerate(classWeight))
model.fit(X_train, y_train, batch_size = batch_size, nb_epoch = nb_epochs, show_accuracy = True, verbose = 2, validation_data = (X_test, y_test), class_weight=classWeight)