python - graphs - Creando un nuevo corpus con NLTK
nltk tokenize (3)
Reconocí que a menudo la respuesta a mi título es ir y leer la documentación, pero revisé el libro de NLTK pero no da la respuesta. Soy algo nuevo para Python.
Tengo un montón de archivos .txt
y quiero poder usar las funciones de corpus que proporciona nltk_data
para el corpus nltk_data
.
Lo intenté con PlaintextCorpusReader
pero no pude llegar más allá de:
>>>import nltk
>>>from nltk.corpus import PlaintextCorpusReader
>>>corpus_root = ''./''
>>>newcorpus = PlaintextCorpusReader(corpus_root, ''.*'')
>>>newcorpus.words()
¿Cómo newcorpus
oraciones de newcorpus
usando punkt? Intenté usar las funciones punkt pero las funciones punkt no pudieron leer la clase PlaintextCorpusReader
?
¿También puede llevarme a cómo puedo escribir los datos segmentados en archivos de texto?
Editar: Esta pregunta tuvo una recompensa una vez, y ahora tiene una segunda recompensa. Ver texto en el cuadro de recompensas.
Creo que PlaintextCorpusReader
ya segmenta la entrada con un token de punkt, al menos si el idioma de entrada es el inglés.
Constructor de PlainTextCorpusReader
def __init__(self, root, fileids,
word_tokenizer=WordPunctTokenizer(),
sent_tokenizer=nltk.data.LazyLoader(
''tokenizers/punkt/english.pickle''),
para_block_reader=read_blankline_block,
encoding=''utf8''):
Puede pasarle al lector un tokenizador de palabras y oraciones, pero para este último el valor predeterminado ya es nltk.data.LazyLoader(''tokenizers/punkt/english.pickle'')
.
Para una sola cuerda, se usaría un tokenizador de la siguiente manera (explicado here , ver la sección 5 para punkt tokenizer).
>>> import nltk.data
>>> text = """
... Punkt knows that the periods in Mr. Smith and Johann S. Bach
... do not mark sentence boundaries. And sometimes sentences
... can start with non-capitalized words. i is a good variable
... name.
... """
>>> tokenizer = nltk.data.load(''tokenizers/punkt/english.pickle'')
>>> tokenizer.tokenize(text.strip())
Después de algunos años de descubrir cómo funciona, aquí está el tutorial actualizado de
¿Cómo crear un corpus NLTK con un directorio de archivos de texto?
La idea principal es hacer uso del paquete nltk.corpus.reader . En el caso de que tenga un directorio de archivos de texto en inglés , lo mejor es usar PlaintextCorpusReader .
Si tiene un directorio que se ve así:
newcorpus/
file1.txt
file2.txt
...
Simplemente use estas líneas de código y puede obtener un corpus:
import os
from nltk.corpus.reader.plaintext import PlaintextCorpusReader
corpusdir = ''newcorpus/'' # Directory of corpus.
newcorpus = PlaintextCorpusReader(corpusdir, ''.*'')
NOTA: que PlaintextCorpusReader
usará nltk.tokenize.sent_tokenize()
y nltk.tokenize.word_tokenize()
para dividir sus textos en oraciones y palabras, y estas funciones están compiladas para inglés, NO puede funcionar para todos los idiomas.
Aquí está el código completo con la creación de archivos de texto de prueba y cómo crear un corpus con NLTK y cómo acceder al corpus en diferentes niveles:
import os
from nltk.corpus.reader.plaintext import PlaintextCorpusReader
# Let''s create a corpus with 2 texts in different textfile.
txt1 = """This is a foo bar sentence./nAnd this is the first txtfile in the corpus."""
txt2 = """Are you a foo bar? Yes I am. Possibly, everyone is./n"""
corpus = [txt1,txt2]
# Make new dir for the corpus.
corpusdir = ''newcorpus/''
if not os.path.isdir(corpusdir):
os.mkdir(corpusdir)
# Output the files into the directory.
filename = 0
for text in corpus:
filename+=1
with open(corpusdir+str(filename)+''.txt'',''w'') as fout:
print>>fout, text
# Check that our corpus do exist and the files are correct.
assert os.path.isdir(corpusdir)
for infile, text in zip(sorted(os.listdir(corpusdir)),corpus):
assert open(corpusdir+infile,''r'').read().strip() == text.strip()
# Create a new corpus by specifying the parameters
# (1) directory of the new corpus
# (2) the fileids of the corpus
# NOTE: in this case the fileids are simply the filenames.
newcorpus = PlaintextCorpusReader(''newcorpus/'', ''.*'')
# Access each file in the corpus.
for infile in sorted(newcorpus.fileids()):
print infile # The fileids of each file.
with newcorpus.open(infile) as fin: # Opens the file.
print fin.read().strip() # Prints the content of the file
print
# Access the plaintext; outputs pure string/basestring.
print newcorpus.raw().strip()
print
# Access paragraphs in the corpus. (list of list of list of strings)
# NOTE: NLTK automatically calls nltk.tokenize.sent_tokenize and
# nltk.tokenize.word_tokenize.
#
# Each element in the outermost list is a paragraph, and
# Each paragraph contains sentence(s), and
# Each sentence contains token(s)
print newcorpus.paras()
print
# To access pargraphs of a specific fileid.
print newcorpus.paras(newcorpus.fileids()[0])
# Access sentences in the corpus. (list of list of strings)
# NOTE: That the texts are flattened into sentences that contains tokens.
print newcorpus.sents()
print
# To access sentences of a specific fileid.
print newcorpus.sents(newcorpus.fileids()[0])
# Access just tokens/words in the corpus. (list of strings)
print newcorpus.words()
# To access tokens of a specific fileid.
print newcorpus.words(newcorpus.fileids()[0])
Finalmente, para leer un directorio de textos y crear un corpus NLTK en otros idiomas, primero debe asegurarse de que tiene un tokenización de palabras y tokenización de oraciones de python que toma la entrada string / basetring y produce dicho resultado:
>>> from nltk.tokenize import sent_tokenize, word_tokenize
>>> txt1 = """This is a foo bar sentence./nAnd this is the first txtfile in the corpus."""
>>> sent_tokenize(txt1)
[''This is a foo bar sentence.'', ''And this is the first txtfile in the corpus.'']
>>> word_tokenize(sent_tokenize(txt1)[0])
[''This'', ''is'', ''a'', ''foo'', ''bar'', ''sentence'', ''.'']
>>> import nltk
>>> from nltk.corpus import PlaintextCorpusReader
>>> corpus_root = ''./''
>>> newcorpus = PlaintextCorpusReader(corpus_root, ''.*'')
"""
if the ./ dir contains the file my_corpus.txt, then you
can view say all the words it by doing this
"""
>>> newcorpus.words(''my_corpus.txt'')