figuras - dibujar lineas en canvas javascript
cómo dibujar una curva suave a través de N puntos utilizando JavaScript canvas HTML5? (9)
Para una aplicación de dibujo, guardo las coordenadas de movimiento del mouse en una matriz y luego las dibujo con lineTo. La línea resultante no es lisa. ¿Cómo puedo producir una sola curva entre todos los puntos acumulados?
Busqué en Google pero solo encontré 3 funciones para dibujar líneas: para 2 puntos de muestra, simplemente use lineTo. Para 3 puntos de muestra quadraticCurveTo, para 4 puntos de muestra, bezierCurveTo.
(Intenté dibujar un BezierCurveTo por cada 4 puntos en el conjunto, pero esto genera dobleces cada 4 puntos de muestra, en lugar de una curva continua suave).
¿Cómo escribo una función para dibujar una curva suave con 5 puntos de muestra y más?
Como señala Daniel Howard , Rob Spencer describe lo que quiere en http://scaledinnovation.com/analytics/splines/aboutSplines.html .
Aquí hay una demostración interactiva: http://jsbin.com/ApitIxo/2/
Aquí está como un fragmento en caso de que jsbin esté abajo.
<!DOCTYPE html>
<html>
<head>
<meta charset=utf-8 />
<title>Demo smooth connection</title>
</head>
<body>
<div id="display">
Click to build a smooth path.
(See Rob Spencer''s <a href="http://scaledinnovation.com/analytics/splines/aboutSplines.html">article</a>)
<br><label><input type="checkbox" id="showPoints" checked> Show points</label>
<br><label><input type="checkbox" id="showControlLines" checked> Show control lines</label>
<br>
<label>
<input type="range" id="tension" min="-1" max="2" step=".1" value=".5" > Tension <span id="tensionvalue">(0.5)</span>
</label>
<div id="mouse"></div>
</div>
<canvas id="canvas"></canvas>
<style>
html { position: relative; height: 100%; width: 100%; }
body { position: absolute; left: 0; right: 0; top: 0; bottom: 0; }
canvas { outline: 1px solid red; }
#display { position: fixed; margin: 8px; background: white; z-index: 1; }
</style>
<script>
function update() {
$("tensionvalue").innerHTML="("+$("tension").value+")";
drawSplines();
}
$("showPoints").onchange = $("showControlLines").onchange = $("tension").onchange = update;
// utility function
function $(id){ return document.getElementById(id); }
var canvas=$("canvas"), ctx=canvas.getContext("2d");
function setCanvasSize() {
canvas.width = parseInt(window.getComputedStyle(document.body).width);
canvas.height = parseInt(window.getComputedStyle(document.body).height);
}
window.onload = window.onresize = setCanvasSize();
function mousePositionOnCanvas(e) {
var el=e.target, c=el;
var scaleX = c.width/c.offsetWidth || 1;
var scaleY = c.height/c.offsetHeight || 1;
if (!isNaN(e.offsetX))
return { x:e.offsetX*scaleX, y:e.offsetY*scaleY };
var x=e.pageX, y=e.pageY;
do {
x -= el.offsetLeft;
y -= el.offsetTop;
el = el.offsetParent;
} while (el);
return { x: x*scaleX, y: y*scaleY };
}
canvas.onclick = function(e){
var p = mousePositionOnCanvas(e);
addSplinePoint(p.x, p.y);
};
function drawPoint(x,y,color){
ctx.save();
ctx.fillStyle=color;
ctx.beginPath();
ctx.arc(x,y,3,0,2*Math.PI);
ctx.fill()
ctx.restore();
}
canvas.onmousemove = function(e) {
var p = mousePositionOnCanvas(e);
$("mouse").innerHTML = p.x+","+p.y;
};
var pts=[]; // a list of x and ys
// given an array of x,y''s, return distance between any two,
// note that i and j are indexes to the points, not directly into the array.
function dista(arr, i, j) {
return Math.sqrt(Math.pow(arr[2*i]-arr[2*j], 2) + Math.pow(arr[2*i+1]-arr[2*j+1], 2));
}
// return vector from i to j where i and j are indexes pointing into an array of points.
function va(arr, i, j){
return [arr[2*j]-arr[2*i], arr[2*j+1]-arr[2*i+1]]
}
function ctlpts(x1,y1,x2,y2,x3,y3) {
var t = $("tension").value;
var v = va(arguments, 0, 2);
var d01 = dista(arguments, 0, 1);
var d12 = dista(arguments, 1, 2);
var d012 = d01 + d12;
return [x2 - v[0] * t * d01 / d012, y2 - v[1] * t * d01 / d012,
x2 + v[0] * t * d12 / d012, y2 + v[1] * t * d12 / d012 ];
}
function addSplinePoint(x, y){
pts.push(x); pts.push(y);
drawSplines();
}
function drawSplines() {
clear();
cps = []; // There will be two control points for each "middle" point, 1 ... len-2e
for (var i = 0; i < pts.length - 2; i += 1) {
cps = cps.concat(ctlpts(pts[2*i], pts[2*i+1],
pts[2*i+2], pts[2*i+3],
pts[2*i+4], pts[2*i+5]));
}
if ($("showControlLines").checked) drawControlPoints(cps);
if ($("showPoints").checked) drawPoints(pts);
drawCurvedPath(cps, pts);
}
function drawControlPoints(cps) {
for (var i = 0; i < cps.length; i += 4) {
showPt(cps[i], cps[i+1], "pink");
showPt(cps[i+2], cps[i+3], "pink");
drawLine(cps[i], cps[i+1], cps[i+2], cps[i+3], "pink");
}
}
function drawPoints(pts) {
for (var i = 0; i < pts.length; i += 2) {
showPt(pts[i], pts[i+1], "black");
}
}
function drawCurvedPath(cps, pts){
var len = pts.length / 2; // number of points
if (len < 2) return;
if (len == 2) {
ctx.beginPath();
ctx.moveTo(pts[0], pts[1]);
ctx.lineTo(pts[2], pts[3]);
ctx.stroke();
}
else {
ctx.beginPath();
ctx.moveTo(pts[0], pts[1]);
// from point 0 to point 1 is a quadratic
ctx.quadraticCurveTo(cps[0], cps[1], pts[2], pts[3]);
// for all middle points, connect with bezier
for (var i = 2; i < len-1; i += 1) {
// console.log("to", pts[2*i], pts[2*i+1]);
ctx.bezierCurveTo(
cps[(2*(i-1)-1)*2], cps[(2*(i-1)-1)*2+1],
cps[(2*(i-1))*2], cps[(2*(i-1))*2+1],
pts[i*2], pts[i*2+1]);
}
ctx.quadraticCurveTo(
cps[(2*(i-1)-1)*2], cps[(2*(i-1)-1)*2+1],
pts[i*2], pts[i*2+1]);
ctx.stroke();
}
}
function clear() {
ctx.save();
// use alpha to fade out
ctx.fillStyle = "rgba(255,255,255,.7)"; // clear screen
ctx.fillRect(0,0,canvas.width,canvas.height);
ctx.restore();
}
function showPt(x,y,fillStyle) {
ctx.save();
ctx.beginPath();
if (fillStyle) {
ctx.fillStyle = fillStyle;
}
ctx.arc(x, y, 5, 0, 2*Math.PI);
ctx.fill();
ctx.restore();
}
function drawLine(x1, y1, x2, y2, strokeStyle){
ctx.beginPath();
ctx.moveTo(x1, y1);
ctx.lineTo(x2, y2);
if (strokeStyle) {
ctx.save();
ctx.strokeStyle = strokeStyle;
ctx.stroke();
ctx.restore();
}
else {
ctx.save();
ctx.strokeStyle = "pink";
ctx.stroke();
ctx.restore();
}
}
</script>
</body>
</html>
Decido agregar, en lugar de publicar mi solución en otra publicación. A continuación se muestra la solución que creo, puede que no sea perfecta, pero hasta ahora el resultado es bueno.
Importante: pasará por todos los puntos!
Si tiene alguna idea, para hacerlo mejor , por favor, comparta conmigo. Gracias.
Aquí están la comparación de antes después:
Guarde este código en HTML para probarlo.
<!DOCTYPE html>
<html>
<body>
<canvas id="myCanvas" width="1200" height="700" style="border:1px solid #d3d3d3;">Your browser does not support the HTML5 canvas tag.</canvas>
<script>
var cv = document.getElementById("myCanvas");
var ctx = cv.getContext("2d");
function gradient(a, b) {
return (b.y-a.y)/(b.x-a.x);
}
function bzCurve(points, f, t) {
//f = 0, will be straight line
//t suppose to be 1, but changing the value can control the smoothness too
if (typeof(f) == ''undefined'') f = 0.3;
if (typeof(t) == ''undefined'') t = 0.6;
ctx.beginPath();
ctx.moveTo(points[0].x, points[0].y);
var m = 0;
var dx1 = 0;
var dy1 = 0;
var preP = points[0];
for (var i = 1; i < points.length; i++) {
var curP = points[i];
nexP = points[i + 1];
if (nexP) {
m = gradient(preP, nexP);
dx2 = (nexP.x - curP.x) * -f;
dy2 = dx2 * m * t;
} else {
dx2 = 0;
dy2 = 0;
}
ctx.bezierCurveTo(preP.x - dx1, preP.y - dy1, curP.x + dx2, curP.y + dy2, curP.x, curP.y);
dx1 = dx2;
dy1 = dy2;
preP = curP;
}
ctx.stroke();
}
// Generate random data
var lines = [];
var X = 10;
var t = 40; //to control width of X
for (var i = 0; i < 100; i++ ) {
Y = Math.floor((Math.random() * 300) + 50);
p = { x: X, y: Y };
lines.push(p);
X = X + t;
}
//draw straight line
ctx.beginPath();
ctx.setLineDash([5]);
ctx.lineWidth = 1;
bzCurve(lines, 0, 1);
//draw smooth line
ctx.setLineDash([0]);
ctx.lineWidth = 2;
ctx.strokeStyle = "blue";
bzCurve(lines, 0.3, 1);
</script>
</body>
</html>
El problema de unir puntos de muestra subsiguientes junto con funciones de tipo "curveTo" disjuntas, es que donde las curvas se encuentran no es uniforme. Esto se debe a que las dos curvas comparten un punto final pero están influenciadas por puntos de control completamente disjuntos. Una solución es "curvar a" los puntos medios entre los siguientes 2 puntos de muestra subsiguientes. Unir las curvas usando estos nuevos puntos interpolados proporciona una transición suave en los puntos finales (lo que es un punto final para una iteración se convierte en un punto de control para la siguiente iteración). En otras palabras, las dos curvas inconexas tienen mucho más en común ahora.
Esta solución se extrajo del libro "Animación Foundation ActionScript 3.0: Hacer que las cosas se muevan". p.95 - técnicas de representación: crear múltiples curvas.
Nota: esta solución no dibuja realmente cada uno de los puntos, que era el título de mi pregunta (más bien aproxima la curva a través de los puntos de muestra pero nunca pasa por los puntos de muestra), sino para mis propósitos (una aplicación de dibujo), es lo suficientemente bueno para mí y visualmente no puedes ver la diferencia. Existe una solución para recorrer todos los puntos de muestra, pero es mucho más complicada (ver http://www.cartogrammar.com/blog/actionscript-curves-update/ )
Aquí está el código de dibujo para el método de aproximación:
// move to the first point
ctx.moveTo(points[0].x, points[0].y);
for (i = 1; i < points.length - 2; i ++)
{
var xc = (points[i].x + points[i + 1].x) / 2;
var yc = (points[i].y + points[i + 1].y) / 2;
ctx.quadraticCurveTo(points[i].x, points[i].y, xc, yc);
}
// curve through the last two points
ctx.quadraticCurveTo(points[i].x, points[i].y, points[i+1].x,points[i+1].y);
Encontré que esto funciona bien
function drawCurve(points, tension) {
ctx.beginPath();
ctx.moveTo(points[0].x, points[0].y);
var t = (tension != null) ? tension : 1;
for (var i = 0; i < points.length - 1; i++) {
var p0 = (i > 0) ? points[i - 1] : points[0];
var p1 = points[i];
var p2 = points[i + 1];
var p3 = (i != points.length - 2) ? points[i + 2] : p2;
var cp1x = p1.x + (p2.x - p0.x) / 6 * t;
var cp1y = p1.y + (p2.y - p0.y) / 6 * t;
var cp2x = p2.x - (p3.x - p1.x) / 6 * t;
var cp2y = p2.y - (p3.y - p1.y) / 6 * t;
ctx.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, p2.x, p2.y);
}
ctx.stroke();
}
Increíblemente tarde pero inspirado por la respuesta brillantemente simple de Homan, permítanme publicar una solución más general (general en el sentido de que la solución de Homan falla en arreglos de puntos con menos de 3 vértices):
function smooth(ctx, points)
{
if(points == undefined || points.length == 0)
{
return true;
}
if(points.length == 1)
{
ctx.moveTo(points[0].x, points[0].y);
ctx.lineTo(points[0].x, points[0].y);
return true;
}
if(points.length == 2)
{
ctx.moveTo(points[0].x, points[0].y);
ctx.lineTo(points[1].x, points[1].y);
return true;
}
ctx.moveTo(points[0].x, points[0].y);
for (var i = 1; i < points.length - 2; i ++)
{
var xc = (points[i].x + points[i + 1].x) / 2;
var yc = (points[i].y + points[i + 1].y) / 2;
ctx.quadraticCurveTo(points[i].x, points[i].y, xc, yc);
}
ctx.quadraticCurveTo(points[i].x, points[i].y, points[i+1].x, points[i+1].y);
}
La primera respuesta no pasará por todos los puntos. Este gráfico pasará exactamente a través de todos los puntos y será una curva de prefecto con los puntos como puntos como [{x:, y:}] n tales puntos.
var points = [{x:1,y:1},{x:2,y:3},{x:3,y:4},{x:4,y:2},{x:5,y:6}] //took 5 example points
ctx.moveTo((points[0].x), points[0].y);
for(var i = 0; i < points.length-1; i ++)
{
var x_mid = (points[i].x + points[i+1].x) / 2;
var y_mid = (points[i].y + points[i+1].y) / 2;
var cp_x1 = (x_mid + points[i].x) / 2;
var cp_y1 = (y_mid + points[i].y) / 2;
var cp_x2 = (x_mid + points[i+1].x) / 2;
var cp_y2 = (y_mid + points[i+1].y) / 2;
ctx.quadraticCurveTo(cp_x1,points[i].y ,x_mid, y_mid);
ctx.quadraticCurveTo(cp_x2,points[i+1].y ,points[i+1].x,points[i+1].y);
}
Para agregar al método de splines cardinales de K3N y quizás abordar las preocupaciones de TJ Crowder acerca de la "inmersión" de curvas en lugares engañosos, getCurvePoints()
el siguiente código en la función getCurvePoints()
, justo antes de res.push(x);
if ((y < _pts[i+1] && y < _pts[i+3]) || (y > _pts[i+1] && y > _pts[i+3])) {
y = (_pts[i+1] + _pts[i+3]) / 2;
}
if ((x < _pts[i] && x < _pts[i+2]) || (x > _pts[i] && x > _pts[i+2])) {
x = (_pts[i] + _pts[i+2]) / 2;
}
Esto crea efectivamente un cuadro delimitador (invisible) entre cada par de puntos sucesivos y asegura que la curva permanezca dentro de este cuadro delimitador, es decir. si un punto en la curva está arriba / abajo / izquierda / derecha de ambos puntos, altera su posición para estar dentro del cuadro. Aquí se usa el punto medio, pero podría mejorarse, tal vez usando interpolación lineal.
Prueba KineticJS: puedes definir una Spline con una matriz de puntos. Aquí hay un ejemplo:
URL anterior: http://www.html5canvastutorials.com/kineticjs/html5-canvas-kineticjs-spline-tutorial/
Ver URL del archivo: https://web.archive.org/web/20141204030628/http://www.html5canvastutorials.com/kineticjs/html5-canvas-kineticjs-spline-tutorial/
Un poco tarde, pero para el registro.
Puede lograr líneas suaves mediante el uso de splines cardinales (también conocido como spline canónico) para dibujar curvas suaves que pasan por los puntos.
Hice esta función para lienzo: se divide en tres funciones para aumentar la versatilidad. La función de envoltura principal tiene este aspecto:
function drawCurve(ctx, ptsa, tension, isClosed, numOfSegments, showPoints) {
showPoints = showPoints ? showPoints : false;
ctx.beginPath();
drawLines(ctx, getCurvePoints(ptsa, tension, isClosed, numOfSegments));
if (showPoints) {
ctx.stroke();
ctx.beginPath();
for(var i=0;i<ptsa.length-1;i+=2)
ctx.rect(ptsa[i] - 2, ptsa[i+1] - 2, 4, 4);
}
}
Para dibujar una curva, tiene una matriz con x, y puntos en el orden: x1,y1, x2,y2, ...xn,yn
.
Úselo así:
var myPoints = [10,10, 40,30, 100,10]; //minimum two points
var tension = 1;
drawCurve(ctx, myPoints); //default tension=0.5
drawCurve(ctx, myPoints, tension);
La función anterior llama a dos subfunciones, una para calcular los puntos suavizados. Esto devuelve una matriz con nuevos puntos: esta es la función central que calcula los puntos suavizados:
function getCurvePoints(pts, tension, isClosed, numOfSegments) {
// use input value if provided, or use a default value
tension = (typeof tension != ''undefined'') ? tension : 0.5;
isClosed = isClosed ? isClosed : false;
numOfSegments = numOfSegments ? numOfSegments : 16;
var _pts = [], res = [], // clone array
x, y, // our x,y coords
t1x, t2x, t1y, t2y, // tension vectors
c1, c2, c3, c4, // cardinal points
st, t, i; // steps based on num. of segments
// clone array so we don''t change the original
//
_pts = pts.slice(0);
// The algorithm require a previous and next point to the actual point array.
// Check if we will draw closed or open curve.
// If closed, copy end points to beginning and first points to end
// If open, duplicate first points to befinning, end points to end
if (isClosed) {
_pts.unshift(pts[pts.length - 1]);
_pts.unshift(pts[pts.length - 2]);
_pts.unshift(pts[pts.length - 1]);
_pts.unshift(pts[pts.length - 2]);
_pts.push(pts[0]);
_pts.push(pts[1]);
}
else {
_pts.unshift(pts[1]); //copy 1. point and insert at beginning
_pts.unshift(pts[0]);
_pts.push(pts[pts.length - 2]); //copy last point and append
_pts.push(pts[pts.length - 1]);
}
// ok, lets start..
// 1. loop goes through point array
// 2. loop goes through each segment between the 2 pts + 1e point before and after
for (i=2; i < (_pts.length - 4); i+=2) {
for (t=0; t <= numOfSegments; t++) {
// calc tension vectors
t1x = (_pts[i+2] - _pts[i-2]) * tension;
t2x = (_pts[i+4] - _pts[i]) * tension;
t1y = (_pts[i+3] - _pts[i-1]) * tension;
t2y = (_pts[i+5] - _pts[i+1]) * tension;
// calc step
st = t / numOfSegments;
// calc cardinals
c1 = 2 * Math.pow(st, 3) - 3 * Math.pow(st, 2) + 1;
c2 = -(2 * Math.pow(st, 3)) + 3 * Math.pow(st, 2);
c3 = Math.pow(st, 3) - 2 * Math.pow(st, 2) + st;
c4 = Math.pow(st, 3) - Math.pow(st, 2);
// calc x and y cords with common control vectors
x = c1 * _pts[i] + c2 * _pts[i+2] + c3 * t1x + c4 * t2x;
y = c1 * _pts[i+1] + c2 * _pts[i+3] + c3 * t1y + c4 * t2y;
//store points in array
res.push(x);
res.push(y);
}
}
return res;
}
Y dibujar los puntos como una curva suavizada (o cualquier otra línea segmentada, siempre que tenga una matriz x, y):
function drawLines(ctx, pts) {
ctx.moveTo(pts[0], pts[1]);
for(i=2;i<pts.length-1;i+=2) ctx.lineTo(pts[i], pts[i+1]);
}
var ctx = document.getElementById("c").getContext("2d");
function drawCurve(ctx, ptsa, tension, isClosed, numOfSegments, showPoints) {
ctx.beginPath();
drawLines(ctx, getCurvePoints(ptsa, tension, isClosed, numOfSegments));
if (showPoints) {
ctx.beginPath();
for(var i=0;i<ptsa.length-1;i+=2)
ctx.rect(ptsa[i] - 2, ptsa[i+1] - 2, 4, 4);
}
ctx.stroke();
}
var myPoints = [10,10, 40,30, 100,10, 200, 100, 200, 50, 250, 120]; //minimum two points
var tension = 1;
drawCurve(ctx, myPoints); //default tension=0.5
drawCurve(ctx, myPoints, tension);
function getCurvePoints(pts, tension, isClosed, numOfSegments) {
// use input value if provided, or use a default value
tension = (typeof tension != ''undefined'') ? tension : 0.5;
isClosed = isClosed ? isClosed : false;
numOfSegments = numOfSegments ? numOfSegments : 16;
var _pts = [], res = [], // clone array
x, y, // our x,y coords
t1x, t2x, t1y, t2y, // tension vectors
c1, c2, c3, c4, // cardinal points
st, t, i; // steps based on num. of segments
// clone array so we don''t change the original
//
_pts = pts.slice(0);
// The algorithm require a previous and next point to the actual point array.
// Check if we will draw closed or open curve.
// If closed, copy end points to beginning and first points to end
// If open, duplicate first points to befinning, end points to end
if (isClosed) {
_pts.unshift(pts[pts.length - 1]);
_pts.unshift(pts[pts.length - 2]);
_pts.unshift(pts[pts.length - 1]);
_pts.unshift(pts[pts.length - 2]);
_pts.push(pts[0]);
_pts.push(pts[1]);
}
else {
_pts.unshift(pts[1]); //copy 1. point and insert at beginning
_pts.unshift(pts[0]);
_pts.push(pts[pts.length - 2]); //copy last point and append
_pts.push(pts[pts.length - 1]);
}
// ok, lets start..
// 1. loop goes through point array
// 2. loop goes through each segment between the 2 pts + 1e point before and after
for (i=2; i < (_pts.length - 4); i+=2) {
for (t=0; t <= numOfSegments; t++) {
// calc tension vectors
t1x = (_pts[i+2] - _pts[i-2]) * tension;
t2x = (_pts[i+4] - _pts[i]) * tension;
t1y = (_pts[i+3] - _pts[i-1]) * tension;
t2y = (_pts[i+5] - _pts[i+1]) * tension;
// calc step
st = t / numOfSegments;
// calc cardinals
c1 = 2 * Math.pow(st, 3) - 3 * Math.pow(st, 2) + 1;
c2 = -(2 * Math.pow(st, 3)) + 3 * Math.pow(st, 2);
c3 = Math.pow(st, 3) - 2 * Math.pow(st, 2) + st;
c4 = Math.pow(st, 3) - Math.pow(st, 2);
// calc x and y cords with common control vectors
x = c1 * _pts[i] + c2 * _pts[i+2] + c3 * t1x + c4 * t2x;
y = c1 * _pts[i+1] + c2 * _pts[i+3] + c3 * t1y + c4 * t2y;
//store points in array
res.push(x);
res.push(y);
}
}
return res;
}
function drawLines(ctx, pts) {
ctx.moveTo(pts[0], pts[1]);
for(i=2;i<pts.length-1;i+=2) ctx.lineTo(pts[i], pts[i+1]);
}
canvas { border: 1px solid red; }
<canvas id="c"><canvas>
Esto resulta en esto:
Puede extender fácilmente el lienzo para poder llamarlo así:
ctx.drawCurve(myPoints);
Agregue lo siguiente a javascript:
if (CanvasRenderingContext2D != ''undefined'') {
CanvasRenderingContext2D.prototype.drawCurve =
function(pts, tension, isClosed, numOfSegments, showPoints) {
drawCurve(this, pts, tension, isClosed, numOfSegments, showPoints)}
}
Puede encontrar una versión más optimizada de esto en NPM ( npm i cardinal-spline-js
) o en GitLab .