studio react permisos intent example definicion archivo androidmanifest activity android android-manifest

react - Cómo analizar el archivo AndroidManifest.xml dentro de un paquete.apk



intent android (14)

Este archivo parece estar en formato XML binario. ¿Qué es este formato y cómo se puede analizar mediante programación (en lugar de usar la herramienta de volcado aapt en el SDK)?

Este formato binario no se trata en la documentación here .

Nota : Deseo acceder a esta información desde fuera del entorno de Android, preferiblemente desde Java.


Utilice android-apktool

Hay una aplicación que lee archivos apk y decodifica XML en forma casi original.

Uso:

apktool d Gmail.apk && cat Gmail/AndroidManifest.xml

Ver android-apktool para más información


¿Qué hay de usar la herramienta de empaquetado de activos de Android (aapt), del SDK de Android, en un script de Python (o lo que sea)?

A través de aapt ( http://elinux.org/Android_aapt ), de hecho, puede recuperar información sobre el paquete .apk y sobre su archivo AndroidManifest.xml . En particular, puede extraer los valores de los elementos individuales de un paquete .apk a través del comando secundario ''volcar'' . Por ejemplo, puede extraer los permisos de usuario en el archivo AndroidManifest.xml dentro de un paquete .apk de esta manera:

$ aapt dump permissions package.apk

Donde package.apk es tu paquete .apk .

Además, puede usar el comando de tubería Unix para borrar la salida. Por ejemplo:

$ aapt dump permissions package.apk | sed 1d | awk ''{ print $NF }''

Aquí una secuencia de comandos de Python que programáticamente:

import os import subprocess #Current directory and file name: curpath = os.path.dirname( os.path.realpath(__file__) ) filepath = os.path.join(curpath, "package.apk") #Extract the AndroidManifest.xml permissions: command = "aapt dump permissions " + filepath + " | sed 1d | awk ''{ print $NF }''" process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=None, shell=True) permissions = process.communicate()[0] print permissions

De manera similar, puede extraer otra información (por ejemplo, paquete , nombre de la aplicación , etc.) de AndroidManifest.xml :

#Extract the APK package info: shellcommand = "aapt dump badging " + filepath process = subprocess.Popen(shellcommand, stdout=subprocess.PIPE, stderr=None, shell=True) apkInfo = process.communicate()[0].splitlines() for info in apkInfo: #Package info: if string.find(info, "package:", 0) != -1: print "App Package: " + findBetween(info, "name=''", "''") print "App Version: " + findBetween(info, "versionName=''", "''") continue #App name: if string.find(info, "application:", 0) != -1: print "App Name: " + findBetween(info, "label=''", "''") continue def findBetween(s, prefix, suffix): try: start = s.index(prefix) + len(prefix) end = s.index(suffix, start) return s[start:end] except ValueError: return ""

Si, en cambio, desea analizar todo el árbol XML de AndroidManifest, puede hacerlo de forma similar con el comando xmltree :

aapt dump xmltree package.apk AndroidManifest.xml

Usando Python como antes:

#Extract the AndroidManifest XML tree: shellcommand = "aapt dump xmltree " + filepath + " AndroidManifest.xml" process = subprocess.Popen(shellcommand, stdout=subprocess.PIPE, stderr=None, shell=True) xmlTree = process.communicate()[0] print "Number of Activities: " + str(xmlTree.count("activity")) print "Number of Services: " + str(xmlTree.count("service")) print "Number of BroadcastReceivers: " + str(xmlTree.count("receiver"))


Compruebe este siguiente proyecto WPF que decodifica las propiedades correctamente.


En caso de que sea útil, aquí hay una versión en C ++ del fragmento de Java publicado por Ribo:

struct decompressXML { // decompressXML -- Parse the ''compressed'' binary form of Android XML docs // such as for AndroidManifest.xml in .apk files enum { endDocTag = 0x00100101, startTag = 0x00100102, endTag = 0x00100103 }; decompressXML(const BYTE* xml, int cb) { // Compressed XML file/bytes starts with 24x bytes of data, // 9 32 bit words in little endian order (LSB first): // 0th word is 03 00 08 00 // 3rd word SEEMS TO BE: Offset at then of StringTable // 4th word is: Number of strings in string table // WARNING: Sometime I indiscriminently display or refer to word in // little endian storage format, or in integer format (ie MSB first). int numbStrings = LEW(xml, cb, 4*4); // StringIndexTable starts at offset 24x, an array of 32 bit LE offsets // of the length/string data in the StringTable. int sitOff = 0x24; // Offset of start of StringIndexTable // StringTable, each string is represented with a 16 bit little endian // character count, followed by that number of 16 bit (LE) (Unicode) chars. int stOff = sitOff + numbStrings*4; // StringTable follows StrIndexTable // XMLTags, The XML tag tree starts after some unknown content after the // StringTable. There is some unknown data after the StringTable, scan // forward from this point to the flag for the start of an XML start tag. int xmlTagOff = LEW(xml, cb, 3*4); // Start from the offset in the 3rd word. // Scan forward until we find the bytes: 0x02011000(x00100102 in normal int) for (int ii=xmlTagOff; ii<cb-4; ii+=4) { if (LEW(xml, cb, ii) == startTag) { xmlTagOff = ii; break; } } // end of hack, scanning for start of first start tag // XML tags and attributes: // Every XML start and end tag consists of 6 32 bit words: // 0th word: 02011000 for startTag and 03011000 for endTag // 1st word: a flag?, like 38000000 // 2nd word: Line of where this tag appeared in the original source file // 3rd word: FFFFFFFF ?? // 4th word: StringIndex of NameSpace name, or FFFFFFFF for default NS // 5th word: StringIndex of Element Name // (Note: 01011000 in 0th word means end of XML document, endDocTag) // Start tags (not end tags) contain 3 more words: // 6th word: 14001400 meaning?? // 7th word: Number of Attributes that follow this tag(follow word 8th) // 8th word: 00000000 meaning?? // Attributes consist of 5 words: // 0th word: StringIndex of Attribute Name''s Namespace, or FFFFFFFF // 1st word: StringIndex of Attribute Name // 2nd word: StringIndex of Attribute Value, or FFFFFFF if ResourceId used // 3rd word: Flags? // 4th word: str ind of attr value again, or ResourceId of value // TMP, dump string table to tr for debugging //tr.addSelect("strings", null); //for (int ii=0; ii<numbStrings; ii++) { // // Length of string starts at StringTable plus offset in StrIndTable // String str = compXmlString(xml, sitOff, stOff, ii); // tr.add(String.valueOf(ii), str); //} //tr.parent(); // Step through the XML tree element tags and attributes int off = xmlTagOff; int indent = 0; int startTagLineNo = -2; while (off < cb) { int tag0 = LEW(xml, cb, off); //int tag1 = LEW(xml, off+1*4); int lineNo = LEW(xml, cb, off+2*4); //int tag3 = LEW(xml, off+3*4); int nameNsSi = LEW(xml, cb, off+4*4); int nameSi = LEW(xml, cb, off+5*4); if (tag0 == startTag) { // XML START TAG int tag6 = LEW(xml, cb, off+6*4); // Expected to be 14001400 int numbAttrs = LEW(xml, cb, off+7*4); // Number of Attributes to follow //int tag8 = LEW(xml, off+8*4); // Expected to be 00000000 off += 9*4; // Skip over 6+3 words of startTag data std::string name = compXmlString(xml, cb, sitOff, stOff, nameSi); //tr.addSelect(name, null); startTagLineNo = lineNo; // Look for the Attributes std::string sb; for (int ii=0; ii<numbAttrs; ii++) { int attrNameNsSi = LEW(xml, cb, off); // AttrName Namespace Str Ind, or FFFFFFFF int attrNameSi = LEW(xml, cb, off+1*4); // AttrName String Index int attrValueSi = LEW(xml, cb, off+2*4); // AttrValue Str Ind, or FFFFFFFF int attrFlags = LEW(xml, cb, off+3*4); int attrResId = LEW(xml, cb, off+4*4); // AttrValue ResourceId or dup AttrValue StrInd off += 5*4; // Skip over the 5 words of an attribute std::string attrName = compXmlString(xml, cb, sitOff, stOff, attrNameSi); std::string attrValue = attrValueSi!=-1 ? compXmlString(xml, cb, sitOff, stOff, attrValueSi) : "resourceID 0x"+toHexString(attrResId); sb.append(" "+attrName+"=/""+attrValue+"/""); //tr.add(attrName, attrValue); } prtIndent(indent, "<"+name+sb+">"); indent++; } else if (tag0 == endTag) { // XML END TAG indent--; off += 6*4; // Skip over 6 words of endTag data std::string name = compXmlString(xml, cb, sitOff, stOff, nameSi); prtIndent(indent, "</"+name+"> (line "+toIntString(startTagLineNo)+"-"+toIntString(lineNo)+")"); //tr.parent(); // Step back up the NobTree } else if (tag0 == endDocTag) { // END OF XML DOC TAG break; } else { prt(" Unrecognized tag code ''"+toHexString(tag0) +"'' at offset "+toIntString(off)); break; } } // end of while loop scanning tags and attributes of XML tree prt(" end at offset "+off); } // end of decompressXML std::string compXmlString(const BYTE* xml, int cb, int sitOff, int stOff, int strInd) { if (strInd < 0) return std::string(""); int strOff = stOff + LEW(xml, cb, sitOff+strInd*4); return compXmlStringAt(xml, cb, strOff); } void prt(std::string str) { printf("%s", str.c_str()); } void prtIndent(int indent, std::string str) { char spaces[46]; memset(spaces, '' '', sizeof(spaces)); spaces[min(indent*2, sizeof(spaces) - 1)] = 0; prt(spaces); prt(str); prt("/n"); } // compXmlStringAt -- Return the string stored in StringTable format at // offset strOff. This offset points to the 16 bit string length, which // is followed by that number of 16 bit (Unicode) chars. std::string compXmlStringAt(const BYTE* arr, int cb, int strOff) { if (cb < strOff + 2) return std::string(""); int strLen = arr[strOff+1]<<8&0xff00 | arr[strOff]&0xff; char* chars = new char[strLen + 1]; chars[strLen] = 0; for (int ii=0; ii<strLen; ii++) { if (cb < strOff + 2 + ii * 2) { chars[ii] = 0; break; } chars[ii] = arr[strOff+2+ii*2]; } std::string str(chars); free(chars); return str; } // end of compXmlStringAt // LEW -- Return value of a Little Endian 32 bit word from the byte array // at offset off. int LEW(const BYTE* arr, int cb, int off) { return (cb > off + 3) ? ( arr[off+3]<<24&0xff000000 | arr[off+2]<<16&0xff0000 | arr[off+1]<<8&0xff00 | arr[off]&0xFF ) : 0; } // end of LEW std::string toHexString(DWORD attrResId) { char ch[20]; sprintf_s(ch, 20, "%lx", attrResId); return std::string(ch); } std::string toIntString(int i) { char ch[20]; sprintf_s(ch, 20, "%ld", i); return std::string(ch); } };


Este método Java, que se ejecuta en un Android, documenta (sobre lo que he podido interpretar) el formato binario del archivo AndroidManifest.xml en el paquete .apk. El segundo cuadro de código muestra cómo llamar a descompressXML y cómo cargar el byte [] desde el archivo del paquete de la aplicación en el dispositivo. (Hay campos cuyo propósito no entiendo, si sabes lo que significan, dime, actualizaré la información).

// decompressXML -- Parse the ''compressed'' binary form of Android XML docs // such as for AndroidManifest.xml in .apk files public static int endDocTag = 0x00100101; public static int startTag = 0x00100102; public static int endTag = 0x00100103; public void decompressXML(byte[] xml) { // Compressed XML file/bytes starts with 24x bytes of data, // 9 32 bit words in little endian order (LSB first): // 0th word is 03 00 08 00 // 3rd word SEEMS TO BE: Offset at then of StringTable // 4th word is: Number of strings in string table // WARNING: Sometime I indiscriminently display or refer to word in // little endian storage format, or in integer format (ie MSB first). int numbStrings = LEW(xml, 4*4); // StringIndexTable starts at offset 24x, an array of 32 bit LE offsets // of the length/string data in the StringTable. int sitOff = 0x24; // Offset of start of StringIndexTable // StringTable, each string is represented with a 16 bit little endian // character count, followed by that number of 16 bit (LE) (Unicode) chars. int stOff = sitOff + numbStrings*4; // StringTable follows StrIndexTable // XMLTags, The XML tag tree starts after some unknown content after the // StringTable. There is some unknown data after the StringTable, scan // forward from this point to the flag for the start of an XML start tag. int xmlTagOff = LEW(xml, 3*4); // Start from the offset in the 3rd word. // Scan forward until we find the bytes: 0x02011000(x00100102 in normal int) for (int ii=xmlTagOff; ii<xml.length-4; ii+=4) { if (LEW(xml, ii) == startTag) { xmlTagOff = ii; break; } } // end of hack, scanning for start of first start tag // XML tags and attributes: // Every XML start and end tag consists of 6 32 bit words: // 0th word: 02011000 for startTag and 03011000 for endTag // 1st word: a flag?, like 38000000 // 2nd word: Line of where this tag appeared in the original source file // 3rd word: FFFFFFFF ?? // 4th word: StringIndex of NameSpace name, or FFFFFFFF for default NS // 5th word: StringIndex of Element Name // (Note: 01011000 in 0th word means end of XML document, endDocTag) // Start tags (not end tags) contain 3 more words: // 6th word: 14001400 meaning?? // 7th word: Number of Attributes that follow this tag(follow word 8th) // 8th word: 00000000 meaning?? // Attributes consist of 5 words: // 0th word: StringIndex of Attribute Name''s Namespace, or FFFFFFFF // 1st word: StringIndex of Attribute Name // 2nd word: StringIndex of Attribute Value, or FFFFFFF if ResourceId used // 3rd word: Flags? // 4th word: str ind of attr value again, or ResourceId of value // TMP, dump string table to tr for debugging //tr.addSelect("strings", null); //for (int ii=0; ii<numbStrings; ii++) { // // Length of string starts at StringTable plus offset in StrIndTable // String str = compXmlString(xml, sitOff, stOff, ii); // tr.add(String.valueOf(ii), str); //} //tr.parent(); // Step through the XML tree element tags and attributes int off = xmlTagOff; int indent = 0; int startTagLineNo = -2; while (off < xml.length) { int tag0 = LEW(xml, off); //int tag1 = LEW(xml, off+1*4); int lineNo = LEW(xml, off+2*4); //int tag3 = LEW(xml, off+3*4); int nameNsSi = LEW(xml, off+4*4); int nameSi = LEW(xml, off+5*4); if (tag0 == startTag) { // XML START TAG int tag6 = LEW(xml, off+6*4); // Expected to be 14001400 int numbAttrs = LEW(xml, off+7*4); // Number of Attributes to follow //int tag8 = LEW(xml, off+8*4); // Expected to be 00000000 off += 9*4; // Skip over 6+3 words of startTag data String name = compXmlString(xml, sitOff, stOff, nameSi); //tr.addSelect(name, null); startTagLineNo = lineNo; // Look for the Attributes StringBuffer sb = new StringBuffer(); for (int ii=0; ii<numbAttrs; ii++) { int attrNameNsSi = LEW(xml, off); // AttrName Namespace Str Ind, or FFFFFFFF int attrNameSi = LEW(xml, off+1*4); // AttrName String Index int attrValueSi = LEW(xml, off+2*4); // AttrValue Str Ind, or FFFFFFFF int attrFlags = LEW(xml, off+3*4); int attrResId = LEW(xml, off+4*4); // AttrValue ResourceId or dup AttrValue StrInd off += 5*4; // Skip over the 5 words of an attribute String attrName = compXmlString(xml, sitOff, stOff, attrNameSi); String attrValue = attrValueSi!=-1 ? compXmlString(xml, sitOff, stOff, attrValueSi) : "resourceID 0x"+Integer.toHexString(attrResId); sb.append(" "+attrName+"=/""+attrValue+"/""); //tr.add(attrName, attrValue); } prtIndent(indent, "<"+name+sb+">"); indent++; } else if (tag0 == endTag) { // XML END TAG indent--; off += 6*4; // Skip over 6 words of endTag data String name = compXmlString(xml, sitOff, stOff, nameSi); prtIndent(indent, "</"+name+"> (line "+startTagLineNo+"-"+lineNo+")"); //tr.parent(); // Step back up the NobTree } else if (tag0 == endDocTag) { // END OF XML DOC TAG break; } else { prt(" Unrecognized tag code ''"+Integer.toHexString(tag0) +"'' at offset "+off); break; } } // end of while loop scanning tags and attributes of XML tree prt(" end at offset "+off); } // end of decompressXML public String compXmlString(byte[] xml, int sitOff, int stOff, int strInd) { if (strInd < 0) return null; int strOff = stOff + LEW(xml, sitOff+strInd*4); return compXmlStringAt(xml, strOff); } public static String spaces = " "; public void prtIndent(int indent, String str) { prt(spaces.substring(0, Math.min(indent*2, spaces.length()))+str); } // compXmlStringAt -- Return the string stored in StringTable format at // offset strOff. This offset points to the 16 bit string length, which // is followed by that number of 16 bit (Unicode) chars. public String compXmlStringAt(byte[] arr, int strOff) { int strLen = arr[strOff+1]<<8&0xff00 | arr[strOff]&0xff; byte[] chars = new byte[strLen]; for (int ii=0; ii<strLen; ii++) { chars[ii] = arr[strOff+2+ii*2]; } return new String(chars); // Hack, just use 8 byte chars } // end of compXmlStringAt // LEW -- Return value of a Little Endian 32 bit word from the byte array // at offset off. public int LEW(byte[] arr, int off) { return arr[off+3]<<24&0xff000000 | arr[off+2]<<16&0xff0000 | arr[off+1]<<8&0xff00 | arr[off]&0xFF; } // end of LEW

Este método lee el AndroidManifest en un byte [] para procesar:

public void getIntents(String path) { try { JarFile jf = new JarFile(path); InputStream is = jf.getInputStream(jf.getEntry("AndroidManifest.xml")); byte[] xml = new byte[is.available()]; int br = is.read(xml); //Tree tr = TrunkFactory.newTree(); decompressXML(xml); //prt("XML/n"+tr.list()); } catch (Exception ex) { console.log("getIntents, ex: "+ex); ex.printStackTrace(); } } // end of getIntents

La mayoría de las aplicaciones se almacenan en / system / app, que es legible sin rootear mi Evo, otras aplicaciones se encuentran en / data / app, que necesitaba el directorio raíz para ver. El argumento ''ruta'' anterior sería algo así como: "/system/app/Weather.apk"


Puede usar la herramienta axml2xml.pl desarrollada hace un tiempo dentro del proyecto android-random . Generará el archivo de manifiesto textual (AndroidManifest.xml) del archivo binario.

Estoy diciendo " textual " y no " original " porque, como muchas herramientas de ingeniería inversa, esta no es perfecta y el resultado no será completo . Supongo que nunca fue característica completa o simplemente no compatible con versiones anteriores (con un esquema de codificación binario más nuevo). Cualquiera que sea el motivo, la herramienta axml2xml.pl no podrá extraer todos los valores de los atributos correctamente. Dichos atributos son minSdkVersion, targetSdkVersion y básicamente todos los atributos que hacen referencia a recursos (como cadenas, iconos, etc.), es decir, solo los nombres de clase (de actividades, servicios, etc.) se extraen correctamente.

Sin embargo, aún puede encontrar la información que falta ejecutando la herramienta aapt en el archivo de la aplicación original de Android ( .apk ):

aapt l -a <someapp.apk>


Si estás en Python o usas Androguard , la función Androguard Androaxml hará esta conversión por ti. La función se detalla en esta publicación de blog , con documentación adicional aquí y fuente aquí .

Uso:

$ ./androaxml.py -h Usage: androaxml.py [options] Options: -h, --help show this help message and exit -i INPUT, --input=INPUT filename input (APK or android''s binary xml) -o OUTPUT, --output=OUTPUT filename output of the xml -v, --version version of the API $ ./androaxml.py -i yourfile.apk -o output.xml $ ./androaxml.py -i AndroidManifest.xml -o output.xml


apk-parser, https://github.com/caoqianli/apk-parser , un ligero impl para java, sin dependencia para aapt u otros binarys, es bueno para analizar archivos binarios xml y otras informaciones de apk.

ApkParser apkParser = new ApkParser(new File(filePath)); // set a locale to translate resource tag into specific strings in language the locale specified, you set locale to Locale.ENGLISH then get apk title ''WeChat'' instead of ''@string/app_name'' for example apkParser.setPreferredLocale(locale); String xml = apkParser.getManifestXml(); System.out.println(xml); String xml2 = apkParser.transBinaryXml(xmlPathInApk); System.out.println(xml2); ApkMeta apkMeta = apkParser.getApkMeta(); System.out.println(apkMeta); Set<Locale> locales = apkParser.getLocales(); for (Locale l : locales) { System.out.println(l); } apkParser.close();


para referencia aquí está mi versión del código de Ribo. La principal diferencia es que descompressXML () devuelve directamente una Cadena, que para mi propósito era un uso más apropiado.

NOTA: mi único propósito en el uso de la solución de Ribo fue obtener una versión publicada del archivo .APK del archivo Manifiesto XML, y confirmo que para este fin funciona muy bien.

EDITAR [2013-03-16]: Funciona muy bien SI la versión está configurada como texto sin formato, pero si está configurada para referirse a un XML de recursos, aparecerá como ''Recurso 0x1'', por ejemplo. En este caso particular, probablemente tenga que acoplar esta solución a otra solución que busque la referencia de recursos de cadena adecuada.

/** * Binary XML doc ending Tag */ public static int endDocTag = 0x00100101; /** * Binary XML start Tag */ public static int startTag = 0x00100102; /** * Binary XML end Tag */ public static int endTag = 0x00100103; /** * Reference var for spacing * Used in prtIndent() */ public static String spaces = " "; /** * Parse the ''compressed'' binary form of Android XML docs * such as for AndroidManifest.xml in .apk files * Source: http://.com/questions/2097813/how-to-parse-the-androidmanifest-xml-file-inside-an-apk-package/4761689#4761689 * * @param xml Encoded XML content to decompress */ public static String decompressXML(byte[] xml) { StringBuilder resultXml = new StringBuilder(); // Compressed XML file/bytes starts with 24x bytes of data, // 9 32 bit words in little endian order (LSB first): // 0th word is 03 00 08 00 // 3rd word SEEMS TO BE: Offset at then of StringTable // 4th word is: Number of strings in string table // WARNING: Sometime I indiscriminently display or refer to word in // little endian storage format, or in integer format (ie MSB first). int numbStrings = LEW(xml, 4*4); // StringIndexTable starts at offset 24x, an array of 32 bit LE offsets // of the length/string data in the StringTable. int sitOff = 0x24; // Offset of start of StringIndexTable // StringTable, each string is represented with a 16 bit little endian // character count, followed by that number of 16 bit (LE) (Unicode) chars. int stOff = sitOff + numbStrings*4; // StringTable follows StrIndexTable // XMLTags, The XML tag tree starts after some unknown content after the // StringTable. There is some unknown data after the StringTable, scan // forward from this point to the flag for the start of an XML start tag. int xmlTagOff = LEW(xml, 3*4); // Start from the offset in the 3rd word. // Scan forward until we find the bytes: 0x02011000(x00100102 in normal int) for (int ii=xmlTagOff; ii<xml.length-4; ii+=4) { if (LEW(xml, ii) == startTag) { xmlTagOff = ii; break; } } // end of hack, scanning for start of first start tag // XML tags and attributes: // Every XML start and end tag consists of 6 32 bit words: // 0th word: 02011000 for startTag and 03011000 for endTag // 1st word: a flag?, like 38000000 // 2nd word: Line of where this tag appeared in the original source file // 3rd word: FFFFFFFF ?? // 4th word: StringIndex of NameSpace name, or FFFFFFFF for default NS // 5th word: StringIndex of Element Name // (Note: 01011000 in 0th word means end of XML document, endDocTag) // Start tags (not end tags) contain 3 more words: // 6th word: 14001400 meaning?? // 7th word: Number of Attributes that follow this tag(follow word 8th) // 8th word: 00000000 meaning?? // Attributes consist of 5 words: // 0th word: StringIndex of Attribute Name''s Namespace, or FFFFFFFF // 1st word: StringIndex of Attribute Name // 2nd word: StringIndex of Attribute Value, or FFFFFFF if ResourceId used // 3rd word: Flags? // 4th word: str ind of attr value again, or ResourceId of value // TMP, dump string table to tr for debugging //tr.addSelect("strings", null); //for (int ii=0; ii<numbStrings; ii++) { // // Length of string starts at StringTable plus offset in StrIndTable // String str = compXmlString(xml, sitOff, stOff, ii); // tr.add(String.valueOf(ii), str); //} //tr.parent(); // Step through the XML tree element tags and attributes int off = xmlTagOff; int indent = 0; int startTagLineNo = -2; while (off < xml.length) { int tag0 = LEW(xml, off); //int tag1 = LEW(xml, off+1*4); int lineNo = LEW(xml, off+2*4); //int tag3 = LEW(xml, off+3*4); int nameNsSi = LEW(xml, off+4*4); int nameSi = LEW(xml, off+5*4); if (tag0 == startTag) { // XML START TAG int tag6 = LEW(xml, off+6*4); // Expected to be 14001400 int numbAttrs = LEW(xml, off+7*4); // Number of Attributes to follow //int tag8 = LEW(xml, off+8*4); // Expected to be 00000000 off += 9*4; // Skip over 6+3 words of startTag data String name = compXmlString(xml, sitOff, stOff, nameSi); //tr.addSelect(name, null); startTagLineNo = lineNo; // Look for the Attributes StringBuffer sb = new StringBuffer(); for (int ii=0; ii<numbAttrs; ii++) { int attrNameNsSi = LEW(xml, off); // AttrName Namespace Str Ind, or FFFFFFFF int attrNameSi = LEW(xml, off+1*4); // AttrName String Index int attrValueSi = LEW(xml, off+2*4); // AttrValue Str Ind, or FFFFFFFF int attrFlags = LEW(xml, off+3*4); int attrResId = LEW(xml, off+4*4); // AttrValue ResourceId or dup AttrValue StrInd off += 5*4; // Skip over the 5 words of an attribute String attrName = compXmlString(xml, sitOff, stOff, attrNameSi); String attrValue = attrValueSi!=-1 ? compXmlString(xml, sitOff, stOff, attrValueSi) : "resourceID 0x"+Integer.toHexString(attrResId); sb.append(" "+attrName+"=/""+attrValue+"/""); //tr.add(attrName, attrValue); } resultXml.append(prtIndent(indent, "<"+name+sb+">")); indent++; } else if (tag0 == endTag) { // XML END TAG indent--; off += 6*4; // Skip over 6 words of endTag data String name = compXmlString(xml, sitOff, stOff, nameSi); resultXml.append(prtIndent(indent, "</"+name+"> (line "+startTagLineNo+"-"+lineNo+")")); //tr.parent(); // Step back up the NobTree } else if (tag0 == endDocTag) { // END OF XML DOC TAG break; } else { Log.e(TAG, " Unrecognized tag code ''"+Integer.toHexString(tag0) +"'' at offset "+off); break; } } // end of while loop scanning tags and attributes of XML tree Log.i(TAG, " end at offset "+off); return resultXml.toString(); } // end of decompressXML /** * Tool Method for decompressXML(); * Compute binary XML to its string format * Source: Source: http://.com/questions/2097813/how-to-parse-the-androidmanifest-xml-file-inside-an-apk-package/4761689#4761689 * * @param xml Binary-formatted XML * @param sitOff * @param stOff * @param strInd * @return String-formatted XML */ public static String compXmlString(byte[] xml, int sitOff, int stOff, int strInd) { if (strInd < 0) return null; int strOff = stOff + LEW(xml, sitOff+strInd*4); return compXmlStringAt(xml, strOff); } /** * Tool Method for decompressXML(); * Apply indentation * * @param indent Indentation level * @param str String to indent * @return Indented string */ public static String prtIndent(int indent, String str) { return (spaces.substring(0, Math.min(indent*2, spaces.length()))+str); } /** * Tool method for decompressXML() * Return the string stored in StringTable format at * offset strOff. This offset points to the 16 bit string length, which * is followed by that number of 16 bit (Unicode) chars. * * @param arr StringTable array * @param strOff Offset to get string from * @return String from StringTable at offset strOff * */ public static String compXmlStringAt(byte[] arr, int strOff) { int strLen = arr[strOff+1]<<8&0xff00 | arr[strOff]&0xff; byte[] chars = new byte[strLen]; for (int ii=0; ii<strLen; ii++) { chars[ii] = arr[strOff+2+ii*2]; } return new String(chars); // Hack, just use 8 byte chars } // end of compXmlStringAt /** * Return value of a Little Endian 32 bit word from the byte array * at offset off. * * @param arr Byte array with 32 bit word * @param off Offset to get word from * @return Value of Little Endian 32 bit word specified */ public static int LEW(byte[] arr, int off) { return arr[off+3]<<24&0xff000000 | arr[off+2]<<16&0xff0000 | arr[off+1]<<8&0xff00 | arr[off]&0xFF; } // end of LEW

Hope it can help other people too.


I found the AXMLPrinter2, a Java app over at the Android4Me project to work fine on the AndroidManifest.xml that I had (and prints the XML out in a nicely formatted way). http://code.google.com/p/android4me/downloads/detail?name=AXMLPrinter2.jar

One note.. it (and the code on this answer from Ribo) doesn''t appear to handle every compiled XML file that I''ve come across. I found one where the strings were stored with one byte per character, rather than the double byte format that it assumes.


I have been running with the Ribo code posted above for over a year, and it has served us well. With recent updates (Gradle 3.x) though, I was no longer able to parse the AndroidManifest.xml, I was getting index out of bounds errors, and in general it was no longer able to parse the file.

Update: I now believe that our issues was with upgrading to Gradle 3.x. This article describes how AirWatch had issues and can be fixed by using a Gradle setting to use aapt instead of aapt2 AirWatch seems to be incompatible with Android Plugin for Gradle 3.0.0-beta1

In searching around I came across this open source project, and it''s being maintained and I was able to get to the point and read both my old APKs that I could previously parse, and the new APKs that the logic from Ribo threw exceptions

https://github.com/xgouchet/AXML

From his example this is what I''m doing

zf = new ZipFile(apkFile); //Getting the manifest ZipEntry entry = zf.getEntry("AndroidManifest.xml"); InputStream is = zf.getInputStream(entry); // Read our manifest Document Document manifestDoc = new CompressedXmlParser().parseDOM(is); // Make sure we got a doc, and that it has children if (null != manifestDoc && manifestDoc.getChildNodes().getLength() > 0) { // Node firstNode = manifestDoc.getFirstChild(); // Now get the attributes out of the node NamedNodeMap nodeMap = firstNode.getAttributes(); // Finally to a point where we can read out our values versionName = nodeMap.getNamedItem("android:versionName").getNodeValue(); versionCode = nodeMap.getNamedItem("android:versionCode").getNodeValue(); }


In Android studio 2.2 you can directly analyze the apk. Goto build- analyze apk. Select the apk, navigate to androidmanifest.xml. You can see the details of androidmanifest.


With the latest SDK-Tools, you can now use a tool called the apkanalyzer to print out the AndroidManifest.xml of an APK (as well as other parts, such as resources).

[android sdk]/tools/bin/apkanalyzer manifest print [app.apk]

apkanalyzer


it can be helpful

public static int vCodeApk(String path) { PackageManager pm = G.context.getPackageManager(); PackageInfo info = pm.getPackageArchiveInfo(path, 0); return info.versionCode; // Toast.makeText(this, "VersionCode : " + info.versionCode + ", VersionName : " + info.versionName, Toast.LENGTH_LONG).show(); }

G is my Application class :

public class G extends Application {