punto online norma flotante doble arithmetic language-agnostic math floating-point rounding ieee-754

language agnostic - online - Con IEEE-754, 0<ABS(const)<1, ¿está garantizado(x/const)*const devolver resultados distintos para valores distintos de X?



norma ieee 754 pdf (2)

Supongamos que hago esta operación:

(X / const) * const

con argumentos de precisión doble como se define por IEEE 754-2008 , división primero, luego multiplicación.

const está en el rango 0 < ABS(const) < 1 .

Suponiendo que la operación tiene éxito (no se producen desbordamientos), ¿se garantiza que los distintos argumentos de X a esta operación arrojen resultados distintos?

En otras palabras, ¿hay algún X1 , X2 y 0 < ABS(const) < 1 para que X1 <> X2 , pero (X1 / const) * const = (X2 / const) * const ?


Sí.

public class TestDoubleDivision { public static void main(String[] args) { final Random random = new Random(); int i = 0; while (i < 10) { final double c = random.nextDouble(); final double x1 = 10.0 * random.nextDouble(); final double x2 = nextDouble(x1); if (x1 / c * c == x2 / c * c) { System.out.printf("x1 = %.20f, x2 = %.20f, c = %.20f/n", x1, x2, c); i++; } } } private static double nextDouble(double d1) { return Double.longBitsToDouble(Double.doubleToLongBits(d1) + 1); } }

huellas dactilares

x1 = 5.77383813703796800000, x2 = 5.77383813703796900000, c = 0.15897456707659440000 x1 = 2.97635611350670850000, x2 = 2.97635611350670900000, c = 0.15347615678619309000 x1 = 7.98634439050267450000, x2 = 7.98634439050267500000, c = 0.83202322046715640000 x1 = 0.11618686267768408000, x2 = 0.11618686267768409000, c = 0.09302449134082225000 x1 = 0.98646731978098480000, x2 = 0.98646731978098490000, c = 0.40549842805620606000 x1 = 3.95828649870362700000, x2 = 3.95828649870362750000, c = 0.75526917984495820000 x1 = 1.65404856207794440000, x2 = 1.65404856207794460000, c = 0.14500102367827516000 x1 = 5.72713430182017500000, x2 = 5.72713430182017550000, c = 0.68241935505532810000 x1 = 3.71143195248990980000, x2 = 3.71143195248991000000, c = 0.21294683305890750000 x1 = 5.66441726170857800000, x2 = 5.66441726170857900000, c = 0.69355199625947250000


(Solo quería agregar algo a la respuesta de starblue; es demasiado tiempo para encajar en un comentario).

Me resulta más fácil ver lo que está sucediendo, y espero que tú también, cuando puedo ver el valor binario completo de un doble. Puse los ejemplos de starblue en un programa C y convertí el resultado a binario (usando mi programa de conversión en http://www.exploringbinary.com/converting-floating-point-numbers-to-binary-strings-in-c/ ). Aquí está el resultado, más el resultado del cálculo:

x1 = 101.1100011000011010010000011001001011111001110000111 x2 = 101.11000110000110100100000110010010111110011100001111 c = 0.00101000101100101000111010100110011111010101111100001 r = 100100.01010001101110101101000101101100011111011010101 x1 = 10.111110011111001001111001011010001100001011001111011 x2 = 10.1111100111110010011110010110100011000010110011111 c = 0.0010011101001010001101101010001000011100110010101011 r = 10011.011001001001100010101001001110011100011111011111 x1 = 111.1111110010000001000100001110001111001101010100101 x2 = 111.11111100100000010001000011100011110011010101001011 c = 0.11010100111111110111100101001001011010110100010111011 r = 1001.100110010100010010100101110100000100000110000011 x1 = 0.0001110110111110011011000001011101101100111011010101 x2 = 0.00011101101111100110110000010111011011001110110101010001 c = 0.0001011111010000011100111111110000001001001011101001 r = 1.00111111101111011111001110101010100101010101010101 x1 = 0.1111110010001001000111110100110100001000001101111111 x2 = 0.11111100100010010001111101001101000010000011011111111 c = 0.01100111110011101011111010110111000101001011000000111 r = 10.011011101100011101000000101000110110101011010011111 x1 = 11.1111010101010010010000111001010000100001011000111 x2 = 11.111101010101001001000011100101000010000101100011101 c = 0.110000010101100101010010001010110001110001011111111 r = 101.00111101101010110100110000011111101001010010101111 x1 = 1.1010011101101111101110100000000000011110110111110111 x2 = 1.1010011101101111101110100000000000011110110111111 c = 0.00100101000111101100100101111110100101011010111111001 r = 1011.011010000011101100001011000110000010011111110001 x1 = 101.10111010001001010111100100111110000111100001000011 x2 = 101.101110100010010101111001001111100001111000010001 c = 0.101011101011001100001000111011000001111010111011011 r = 1000.0110010001110100001001010000000101111000011111011 x1 = 11.101101100010000001100111100010010100011000001001111 x2 = 11.10110110001000000110011110001001010001100000101 c = 0.0011011010000011101011110000001111000110010101111111 r = 10001.01101101110011010100011111101110101011001010001 x1 = 101.10101010000101110011111111101001111011111010101111 x2 = 101.1010101000010111001111111110100111101111101011 c = 0.1011000110001100100111111010011000000010100011 r = 1000.0010101011010001010101111000111101110100001000001

(Por cierto, la parte "* const" de la expresión es innecesaria: la división por const solo muestra que X1 / const == X2 / const)

Realmente puede ver lo que sucede cuando compara los valores dobles con los valores de precisión verdaderos y arbitrarios. Tome el primer ejemplo, por ejemplo:

x1/c = x2/c (double) = 100100.01010001101110101101000101101100011111011010101 x1/c (true) = 100100.01010001101110101101000101101100011111011010100 1011... x2/c (true) = 100100.01010001101110101101000101101100011111011010101 0111...

Puse un espacio entre los bits significativos 53 y 54, donde el redondeo se produce en un doble. x1 / c redondea hacia arriba, y x2 / c redondea hacia abajo (trunca), convirtiéndose en el mismo valor.