python - learning - Haz predicciones usando un gráfico de tensorflow de un modelo de keras
tensorflow python español (1)
@frankyjuang me vinculó aquí
y combinando esto con el código de
https://github.com/metaflow-ai/blog/blob/master/tf-freeze/load.py
y
https://github.com/tensorflow/tensorflow/issues/675
He encontrado una solución tanto para predecir usando un gráfico tf como para crear la función jacobiana:
import tensorflow as tf
import numpy as np
# Create function to convert saved keras model to tensorflow graph
def convert_to_pb(weight_file,input_fld='''',output_fld=''''):
import os
import os.path as osp
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import graph_io
from keras.models import load_model
from keras import backend as K
# weight_file is a .h5 keras model file
output_node_names_of_input_network = ["pred0"]
output_node_names_of_final_network = ''output_node''
# change filename to a .pb tensorflow file
output_graph_name = weight_file[:-2]+''pb''
weight_file_path = osp.join(input_fld, weight_file)
net_model = load_model(weight_file_path)
num_output = len(output_node_names_of_input_network)
pred = [None]*num_output
pred_node_names = [None]*num_output
for i in range(num_output):
pred_node_names[i] = output_node_names_of_final_network+str(i)
pred[i] = tf.identity(net_model.output[i], name=pred_node_names[i])
sess = K.get_session()
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), pred_node_names)
graph_io.write_graph(constant_graph, output_fld, output_graph_name, as_text=False)
print(''saved the constant graph (ready for inference) at: '', osp.join(output_fld, output_graph_name))
return output_fld+output_graph_name
Llamada:
tf_model_path = convert_to_pb(''model_file.h5'',''/model_dir/'',''/model_dir/'')
Crear una función para cargar el modelo tf como un gráfico:
def load_graph(frozen_graph_filename):
# We load the protobuf file from the disk and parse it to retrieve the
# unserialized graph_def
with tf.gfile.GFile(frozen_graph_filename, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# Then, we can use again a convenient built-in function to import a graph_def into the
# current default Graph
with tf.Graph().as_default() as graph:
tf.import_graph_def(
graph_def,
input_map=None,
return_elements=None,
name="prefix",
op_dict=None,
producer_op_list=None
)
input_name = graph.get_operations()[0].name+'':0''
output_name = graph.get_operations()[-1].name+'':0''
return graph, input_name, output_name
Crea una función para hacer predicciones de modelos usando el gráfico tf
def predict(model_path, input_data):
# load tf graph
tf_model,tf_input,tf_output = load_graph(model_path)
# Create tensors for model input and output
x = tf_model.get_tensor_by_name(tf_input)
y = tf_model.get_tensor_by_name(tf_output)
# Number of model outputs
num_outputs = y.shape.as_list()[0]
predictions = np.zeros((input_data.shape[0],num_outputs))
for i in range(input_data.shape[0]):
with tf.Session(graph=tf_model) as sess:
y_out = sess.run(y, feed_dict={x: input_data[i:i+1]})
predictions[i] = y_out
return predictions
Hacer predicciones:
tf_predictions = predict(tf_model_path,test_data)
Función jacobiana:
def compute_jacobian(model_path,input_data):
tf_model,tf_input,tf_output = load_graph(model_path)
x = tf_model.get_tensor_by_name(tf_input)
y = tf_model.get_tensor_by_name(tf_output)
y_list = tf.unstack(y)
num_outputs = y.shape.as_list()[0]
jacobian = np.zeros((num_outputs,input_data.shape[0],input_data.shape[1]))
for i in range(input_data.shape[0]):
with tf.Session(graph=tf_model) as sess:
y_out = sess.run([tf.gradients(y_, x)[0] for y_ in y_list], feed_dict={x: input_data[i:i+1]})
jac_temp = np.asarray(y_out)
jacobian[:,i:i+1,:]=jac_temp[:,:,:,0]
return jacobian
Calcular la matriz jacobiana:
jacobians = compute_jacobian(tf_model_path,test_data)
Tengo un modelo entrenado utilizando Keras con Tensorflow como mi backend, pero ahora necesito convertir mi modelo en un gráfico de tensorflow para una aplicación determinada. Intenté hacer esto y hacer predicciones para asegurar que está funcionando correctamente, pero al compararlo con los resultados obtenidos de model.predict () obtengo valores muy diferentes. Por ejemplo:
from keras.models import load_model
import tensorflow as tf
model = load_model(''model_file.h5'')
x_placeholder = tf.placeholder(tf.float32, shape=(None,7214,1))
y = model(x_placeholder)
x = np.ones((1,7214,1))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print("Predictions from:/ntf graph: "+str(sess.run(y, feed_dict={x_placeholder:x})))
print("keras predict: "+str(model.predict(x)))
devoluciones:
Predictions from:
tf graph: [[-0.1015993 0.07432419 0.0592984 ]]
keras predict: [[ 0.39339241 0.57949686 -3.67846966]]
Los valores de keras predicen que son correctos, pero los resultados del gráfico tf no lo son.
Si es útil conocer la aplicación final prevista, estoy creando una matriz jacobiana con la función tf.gradients (), pero actualmente no devuelve los resultados correctos cuando se compara con la función jacobiana de theano, que proporciona el jacobiano correcto. Aquí está mi código jacobian tensorflow:
x = tf.placeholder(tf.float32, shape=(None,7214,1))
y = tf.reshape(model(x)[0],[-1])
y_list = tf.unstack(y)
jacobian_list = [tf.gradients(y_, x)[0] for y_ in y_list]
jacobian = tf.stack(jacobian_list)
EDITAR: código del modelo
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, InputLayer, Flatten
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
# activation function used following every layer except for the output layers
activation = ''relu''
# model weight initializer
initializer = ''he_normal''
# shape of input data that is fed into the input layer
input_shape = (None,7214,1)
# number of filters used in the convolutional layers
num_filters = [4,16]
# length of the filters in the convolutional layers
filter_length = 8
# length of the maxpooling window
pool_length = 4
# number of nodes in each of the hidden fully connected layers
num_hidden_nodes = [256,128]
# number of samples fed into model at once during training
batch_size = 64
# maximum number of interations for model training
max_epochs = 30
# initial learning rate for optimization algorithm
lr = 0.0007
# exponential decay rate for the 1st moment estimates for optimization algorithm
beta_1 = 0.9
# exponential decay rate for the 2nd moment estimates for optimization algorithm
beta_2 = 0.999
# a small constant for numerical stability for optimization algorithm
optimizer_epsilon = 1e-08
model = Sequential([
InputLayer(batch_input_shape=input_shape),
Conv1D(kernel_initializer=initializer, activation=activation, padding="same", filters=num_filters[0], kernel_size=filter_length),
Conv1D(kernel_initializer=initializer, activation=activation, padding="same", filters=num_filters[1], kernel_size=filter_length),
MaxPooling1D(pool_size=pool_length),
Flatten(),
Dense(units=num_hidden_nodes[0], kernel_initializer=initializer, activation=activation),
Dense(units=num_hidden_nodes[1], kernel_initializer=initializer, activation=activation),
Dense(units=3, activation="linear", input_dim=num_hidden_nodes[1]),
])
# compile model
loss_function = mean squared error
early_stopping_min_delta = 0.0001
early_stopping_patience = 4
reduce_lr_factor = 0.5
reuce_lr_epsilon = 0.0009
reduce_lr_patience = 2
reduce_lr_min = 0.00008
optimizer = Adam(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=optimizer_epsilon, decay=0.0)
early_stopping = EarlyStopping(monitor=''val_loss'', min_delta=early_stopping_min_delta,
patience=early_stopping_patience, verbose=2, mode=''min'')
reduce_lr = ReduceLROnPlateau(monitor=''loss'', factor=0.5, epsilon=reuce_lr_epsilon,
patience=reduce_lr_patience, min_lr=reduce_lr_min, mode=''min'', verbose=2)
model.compile(optimizer=optimizer, loss=loss_function)
model.fit(train_x, train_y, validation_data=(cv_x, cv_y),
epochs=max_epochs, batch_size=batch_size, verbose=2,
callbacks=[reduce_lr,early_stopping])
model.save(''model_file.h5'')