usar learning imagenes español ejemplos clasificador basicos aplicaciones python machine-learning tensorflow keras

python - learning - Haz predicciones usando un gráfico de tensorflow de un modelo de keras



tensorflow python español (1)

@frankyjuang me vinculó aquí

this

y combinando esto con el código de

https://github.com/metaflow-ai/blog/blob/master/tf-freeze/load.py

y

https://github.com/tensorflow/tensorflow/issues/675

He encontrado una solución tanto para predecir usando un gráfico tf como para crear la función jacobiana:

import tensorflow as tf import numpy as np # Create function to convert saved keras model to tensorflow graph def convert_to_pb(weight_file,input_fld='''',output_fld=''''): import os import os.path as osp from tensorflow.python.framework import graph_util from tensorflow.python.framework import graph_io from keras.models import load_model from keras import backend as K # weight_file is a .h5 keras model file output_node_names_of_input_network = ["pred0"] output_node_names_of_final_network = ''output_node'' # change filename to a .pb tensorflow file output_graph_name = weight_file[:-2]+''pb'' weight_file_path = osp.join(input_fld, weight_file) net_model = load_model(weight_file_path) num_output = len(output_node_names_of_input_network) pred = [None]*num_output pred_node_names = [None]*num_output for i in range(num_output): pred_node_names[i] = output_node_names_of_final_network+str(i) pred[i] = tf.identity(net_model.output[i], name=pred_node_names[i]) sess = K.get_session() constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), pred_node_names) graph_io.write_graph(constant_graph, output_fld, output_graph_name, as_text=False) print(''saved the constant graph (ready for inference) at: '', osp.join(output_fld, output_graph_name)) return output_fld+output_graph_name

Llamada:

tf_model_path = convert_to_pb(''model_file.h5'',''/model_dir/'',''/model_dir/'')

Crear una función para cargar el modelo tf como un gráfico:

def load_graph(frozen_graph_filename): # We load the protobuf file from the disk and parse it to retrieve the # unserialized graph_def with tf.gfile.GFile(frozen_graph_filename, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # Then, we can use again a convenient built-in function to import a graph_def into the # current default Graph with tf.Graph().as_default() as graph: tf.import_graph_def( graph_def, input_map=None, return_elements=None, name="prefix", op_dict=None, producer_op_list=None ) input_name = graph.get_operations()[0].name+'':0'' output_name = graph.get_operations()[-1].name+'':0'' return graph, input_name, output_name

Crea una función para hacer predicciones de modelos usando el gráfico tf

def predict(model_path, input_data): # load tf graph tf_model,tf_input,tf_output = load_graph(model_path) # Create tensors for model input and output x = tf_model.get_tensor_by_name(tf_input) y = tf_model.get_tensor_by_name(tf_output) # Number of model outputs num_outputs = y.shape.as_list()[0] predictions = np.zeros((input_data.shape[0],num_outputs)) for i in range(input_data.shape[0]): with tf.Session(graph=tf_model) as sess: y_out = sess.run(y, feed_dict={x: input_data[i:i+1]}) predictions[i] = y_out return predictions

Hacer predicciones:

tf_predictions = predict(tf_model_path,test_data)

Función jacobiana:

def compute_jacobian(model_path,input_data): tf_model,tf_input,tf_output = load_graph(model_path) x = tf_model.get_tensor_by_name(tf_input) y = tf_model.get_tensor_by_name(tf_output) y_list = tf.unstack(y) num_outputs = y.shape.as_list()[0] jacobian = np.zeros((num_outputs,input_data.shape[0],input_data.shape[1])) for i in range(input_data.shape[0]): with tf.Session(graph=tf_model) as sess: y_out = sess.run([tf.gradients(y_, x)[0] for y_ in y_list], feed_dict={x: input_data[i:i+1]}) jac_temp = np.asarray(y_out) jacobian[:,i:i+1,:]=jac_temp[:,:,:,0] return jacobian

Calcular la matriz jacobiana:

jacobians = compute_jacobian(tf_model_path,test_data)

Tengo un modelo entrenado utilizando Keras con Tensorflow como mi backend, pero ahora necesito convertir mi modelo en un gráfico de tensorflow para una aplicación determinada. Intenté hacer esto y hacer predicciones para asegurar que está funcionando correctamente, pero al compararlo con los resultados obtenidos de model.predict () obtengo valores muy diferentes. Por ejemplo:

from keras.models import load_model import tensorflow as tf model = load_model(''model_file.h5'') x_placeholder = tf.placeholder(tf.float32, shape=(None,7214,1)) y = model(x_placeholder) x = np.ones((1,7214,1)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print("Predictions from:/ntf graph: "+str(sess.run(y, feed_dict={x_placeholder:x}))) print("keras predict: "+str(model.predict(x)))

devoluciones:

Predictions from: tf graph: [[-0.1015993 0.07432419 0.0592984 ]] keras predict: [[ 0.39339241 0.57949686 -3.67846966]]

Los valores de keras predicen que son correctos, pero los resultados del gráfico tf no lo son.

Si es útil conocer la aplicación final prevista, estoy creando una matriz jacobiana con la función tf.gradients (), pero actualmente no devuelve los resultados correctos cuando se compara con la función jacobiana de theano, que proporciona el jacobiano correcto. Aquí está mi código jacobian tensorflow:

x = tf.placeholder(tf.float32, shape=(None,7214,1)) y = tf.reshape(model(x)[0],[-1]) y_list = tf.unstack(y) jacobian_list = [tf.gradients(y_, x)[0] for y_ in y_list] jacobian = tf.stack(jacobian_list)

EDITAR: código del modelo

import numpy as np from keras.models import Sequential from keras.layers import Dense, InputLayer, Flatten from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from keras.optimizers import Adam from keras.callbacks import EarlyStopping, ReduceLROnPlateau # activation function used following every layer except for the output layers activation = ''relu'' # model weight initializer initializer = ''he_normal'' # shape of input data that is fed into the input layer input_shape = (None,7214,1) # number of filters used in the convolutional layers num_filters = [4,16] # length of the filters in the convolutional layers filter_length = 8 # length of the maxpooling window pool_length = 4 # number of nodes in each of the hidden fully connected layers num_hidden_nodes = [256,128] # number of samples fed into model at once during training batch_size = 64 # maximum number of interations for model training max_epochs = 30 # initial learning rate for optimization algorithm lr = 0.0007 # exponential decay rate for the 1st moment estimates for optimization algorithm beta_1 = 0.9 # exponential decay rate for the 2nd moment estimates for optimization algorithm beta_2 = 0.999 # a small constant for numerical stability for optimization algorithm optimizer_epsilon = 1e-08 model = Sequential([ InputLayer(batch_input_shape=input_shape), Conv1D(kernel_initializer=initializer, activation=activation, padding="same", filters=num_filters[0], kernel_size=filter_length), Conv1D(kernel_initializer=initializer, activation=activation, padding="same", filters=num_filters[1], kernel_size=filter_length), MaxPooling1D(pool_size=pool_length), Flatten(), Dense(units=num_hidden_nodes[0], kernel_initializer=initializer, activation=activation), Dense(units=num_hidden_nodes[1], kernel_initializer=initializer, activation=activation), Dense(units=3, activation="linear", input_dim=num_hidden_nodes[1]), ]) # compile model loss_function = mean squared error early_stopping_min_delta = 0.0001 early_stopping_patience = 4 reduce_lr_factor = 0.5 reuce_lr_epsilon = 0.0009 reduce_lr_patience = 2 reduce_lr_min = 0.00008 optimizer = Adam(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=optimizer_epsilon, decay=0.0) early_stopping = EarlyStopping(monitor=''val_loss'', min_delta=early_stopping_min_delta, patience=early_stopping_patience, verbose=2, mode=''min'') reduce_lr = ReduceLROnPlateau(monitor=''loss'', factor=0.5, epsilon=reuce_lr_epsilon, patience=reduce_lr_patience, min_lr=reduce_lr_min, mode=''min'', verbose=2) model.compile(optimizer=optimizer, loss=loss_function) model.fit(train_x, train_y, validation_data=(cv_x, cv_y), epochs=max_epochs, batch_size=batch_size, verbose=2, callbacks=[reduce_lr,early_stopping]) model.save(''model_file.h5'')