una - reemplazar valores perdidos en r
Cómo reemplazar NA(valores perdidos) en un marco de datos con valores vecinos (2)
Dependiendo de los datos tidyr::fill()
podría ser una opción:
library(tidyverse)
df %>% fill(x) # single column x
df %>% fill(x, y) # multiple columns, x and y
df %>% fill(x, .direction = ''up'') # filling from the bottom up rather than top down
862 2006-05-19 6.241603 5.774208
863 2006-05-20 NA NA
864 2006-05-21 NA NA
865 2006-05-22 6.383929 5.906426
866 2006-05-23 6.782068 6.268758
867 2006-05-24 6.534616 6.013767
868 2006-05-25 6.370312 5.856366
869 2006-05-26 6.225175 5.781617
870 2006-05-27 NA NA
Tengo un marco de datos x como el de arriba, con algunos NA, que quiero rellenar con valores adyacentes que no sean de NA, como para el 2006-05-20, será de 19 y 22
¿Cómo se hace la pregunta?
Formato correcto de sus datos se ve así
862 2006-05-19 6.241603 5.774208
863 2006-05-20 NA NA
864 2006-05-21 NA NA
865 2006-05-22 6.383929 5.906426
866 2006-05-23 6.782068 6.268758
867 2006-05-24 6.534616 6.013767
868 2006-05-25 6.370312 5.856366
869 2006-05-26 6.225175 5.781617
870 2006-05-27 NA NA
y es de una naturaleza de series de tiempo. Así que cargaría en un objeto del zoo
de clase (del paquete del zoo ) ya que le permite elegir una serie de estrategias, vea a continuación. La opción que elija dependerá de la naturaleza de sus datos y de su aplicación. En general, el campo de "descifrar datos faltantes" se llama imputación de datos y existe una literatura bastante extensa.
R> x <- zoo(X[,3:4], order.by=as.Date(X[,2]))
R> x
x y
2006-05-19 6.242 5.774
2006-05-20 NA NA
2006-05-21 NA NA
2006-05-22 6.384 5.906
2006-05-23 6.782 6.269
2006-05-24 6.535 6.014
2006-05-25 6.370 5.856
2006-05-26 6.225 5.782
2006-05-27 NA NA
R> na.locf(x) # last observation carried forward
x y
2006-05-19 6.242 5.774
2006-05-20 6.242 5.774
2006-05-21 6.242 5.774
2006-05-22 6.384 5.906
2006-05-23 6.782 6.269
2006-05-24 6.535 6.014
2006-05-25 6.370 5.856
2006-05-26 6.225 5.782
2006-05-27 6.225 5.782
R> na.approx(x) # approximation based on before/after values
x y
2006-05-19 6.242 5.774
2006-05-20 6.289 5.818
2006-05-21 6.336 5.862
2006-05-22 6.384 5.906
2006-05-23 6.782 6.269
2006-05-24 6.535 6.014
2006-05-25 6.370 5.856
2006-05-26 6.225 5.782
R> na.spline(x) # spline fit ...
x y
2006-05-19 6.242 5.774
2006-05-20 5.585 5.159
2006-05-21 5.797 5.358
2006-05-22 6.384 5.906
2006-05-23 6.782 6.269
2006-05-24 6.535 6.014
2006-05-25 6.370 5.856
2006-05-26 6.225 5.782
2006-05-27 5.973 5.716
R>