c# - puro - Algoritmo para simplificar decimal a fracciones
fracciones y expresiones decimales (21)
Aquí hay una versión de C # del ejemplo de python de Will Brown. También lo cambié para manejar números enteros separados (por ejemplo, "2 1/8" en lugar de "17/8").
public static string DoubleToFraction(double num, double epsilon = 0.0001, int maxIterations = 20)
{
double[] d = new double[maxIterations + 2];
d[1] = 1;
double z = num;
double n = 1;
int t = 1;
int wholeNumberPart = (int)num;
double decimalNumberPart = num - Convert.ToDouble(wholeNumberPart);
while (t < maxIterations && Math.Abs(n / d[t] - num) > epsilon)
{
t++;
z = 1 / (z - (int)z);
d[t] = d[t - 1] * (int)z + d[t - 2];
n = (int)(decimalNumberPart * d[t] + 0.5);
}
return string.Format((wholeNumberPart > 0 ? wholeNumberPart.ToString() + " " : "") + "{0}/{1}",
n.ToString(),
d[t].ToString()
);
}
Intenté escribir un algoritmo para simplificar un decimal en una fracción y me di cuenta de que no era demasiado simple. Sorprendentemente miré en línea y todos los códigos que encontré fueron demasiado largos o no funcionarían en algunos casos. Lo que fue aún más molesto fue que no funcionaron para decimales recurrentes. Sin embargo, me preguntaba si habría un matemático / programador aquí que entienda todos los procesos implicados al simplificar un decimal en una fracción. ¿Nadie?
El algoritmo que otras personas le han dado obtiene la respuesta calculando la fracción continua del número. Esto da una secuencia fraccional que se garantiza que converge muy, muy rápidamente. Sin embargo, no se garantiza que le proporcione la fracción más pequeña que está dentro de un épsilon de distancia de un número real. Para encontrar que tienes que caminar el árbol de Stern-Brocot .
Para hacer eso resta del piso para obtener el número en el rango [0, 1), luego tu estimación más baja es 0, y tu estimación superior es 1. Ahora haz una búsqueda binaria hasta que estés lo suficientemente cerca. En cada iteración, si su valor más bajo es a / b y su valor superior es c / d, su centro es (a + c) / (b + d). Pon a prueba tu centro contra x, y haz que el centro sea el superior, el inferior o devuelve tu respuesta final.
Aquí hay un Python bastante no idiomático (y por lo tanto, afortunadamente, legible aunque no conozcas el lenguaje) que implementa este algoritmo.
def float_to_fraction (x, error=0.000001):
n = int(math.floor(x))
x -= n
if x < error:
return (n, 1)
elif 1 - error < x:
return (n+1, 1)
# The lower fraction is 0/1
lower_n = 0
lower_d = 1
# The upper fraction is 1/1
upper_n = 1
upper_d = 1
while True:
# The middle fraction is (lower_n + upper_n) / (lower_d + upper_d)
middle_n = lower_n + upper_n
middle_d = lower_d + upper_d
# If x + error < middle
if middle_d * (x + error) < middle_n:
# middle is our new upper
upper_n = middle_n
upper_d = middle_d
# Else If middle < x - error
elif middle_n < (x - error) * middle_d:
# middle is our new lower
lower_n = middle_n
lower_d = middle_d
# Else middle is our best fraction
else:
return (n * middle_d + middle_n, middle_d)
Encontré el mismo documento al que hacía referencia Matt, y tomé un segundo y lo implementé en Python. Quizás ver la misma idea en el código lo hará más claro. De acuerdo, solicitaste una respuesta en C # y te la estoy dando en Python, pero es un programa bastante trivial, y estoy seguro de que sería fácil de traducir. Los parámetros son num
(el número decimal que desea convertir en un racional) y epsilon
(la diferencia máxima permitida entre num
y el racional calculado). Algunas ejecuciones rápidas de prueba encuentran que generalmente solo se necesitan dos o tres iteraciones para converger cuando epsilon
es alrededor de 1e-4.
def dec2frac(num, epsilon, max_iter=20):
d = [0, 1] + ([0] * max_iter)
z = num
n = 1
t = 1
while num and t < max_iter and abs(n/d[t] - num) > epsilon:
t += 1
z = 1/(z - int(z))
d[t] = d[t-1] * int(z) + d[t-2]
# int(x + 0.5) is equivalent to rounding x.
n = int(num * d[t] + 0.5)
return n, d[t]
Editar: Acabo de notar su nota sobre querer que funcionen con decimales recurrentes. No conozco ningún idioma que tenga sintaxis para admitir decimales recurrentes, así que no estoy seguro de cómo se manejarían, pero al ejecutar 0.6666666 y 0.166666 a través de este método, se devuelven los resultados correctos (2/3 y 1/6, respectivamente).
Otra edición (¡no pensé que esto sería tan interesante!): Si quieres saber más sobre la teoría detrás de este algoritmo, Wikipedia tiene una página excelente sobre el algoritmo euclidiano
Escribí una clase rápida que funciona bastante rápido y da los resultados que esperaría. Puedes elegir tu precisión también. Es mucho más simple de cualquier código que he visto y también funciona rápido.
//Written By Brian Dobony
public static class Fraction
{
public static string ConvertDecimal(Double NumberToConvert, int DenominatorPercision = 32)
{
int WholeNumber = (int)NumberToConvert;
double DecimalValue = NumberToConvert - WholeNumber;
double difference = 1;
int numerator = 1;
int denominator = 1;
// find closest value that matches percision
// Automatically finds Fraction in simplified form
for (int y = 2; y < DenominatorPercision + 1; y++)
{
for (int x = 1; x < y; x++)
{
double tempdif = Math.Abs(DecimalValue - (double)x / (double)y);
if (tempdif < difference)
{
numerator = x;
denominator = y;
difference = tempdif;
// if exact match is found return it
if (difference == 0)
{
return FractionBuilder(WholeNumber, numerator, denominator);
}
}
}
}
return FractionBuilder(WholeNumber, numerator, denominator);
}
private static string FractionBuilder(int WholeNumber, int Numerator, int Denominator)
{
if (WholeNumber == 0)
{
return Numerator + @"/" + Denominator;
}
else
{
return WholeNumber + " " + Numerator + @"/" + Denominator;
}
}
}
Esta es la versión C # del algoritmo de Ian Richards / John Kennedy. Otras respuestas aquí usando este mismo algoritmo:
- share (enlaces al periódico Kennedy solamente)
- share (Python)
- share (C #)
- share (C)
No maneja infinitos y NaN.
Este algoritmo es rápido .
Por ejemplo, valores y una comparación con otros algoritmos, ver share
public Fraction RealToFraction(double value, double accuracy)
{
if (accuracy <= 0.0 || accuracy >= 1.0)
{
throw new ArgumentOutOfRangeException("accuracy", "Must be > 0 and < 1.");
}
int sign = Math.Sign(value);
if (sign == -1)
{
value = Math.Abs(value);
}
// Accuracy is the maximum relative error; convert to absolute maxError
double maxError = sign == 0 ? accuracy : value * accuracy;
int n = (int) Math.Floor(value);
value -= n;
if (value < maxError)
{
return new Fraction(sign * n, 1);
}
if (1 - maxError < value)
{
return new Fraction(sign * (n + 1), 1);
}
double z = value;
int previousDenominator = 0;
int denominator = 1;
int numerator;
do
{
z = 1.0 / (z - (int) z);
int temp = denominator;
denominator = denominator * (int) z + previousDenominator;
previousDenominator = temp;
numerator = Convert.ToInt32(value * denominator);
}
while (Math.Abs(value - (double) numerator / denominator) > maxError && z != (int) z);
return new Fraction((n * denominator + numerator) * sign, denominator);
}
Este algoritmo de David Eppstein, UC Irvine, basado en la teoría de fracciones continuas y originalmente en C, fue traducido a C # por mí. Las fracciones que genera satisfacen el margen de error, pero en su mayoría no se ven tan bien como las soluciones en mis otras respuestas. Por ejemplo, 0.5
convierte en 999/1999
mientras que 1/2
sería preferido cuando se muestra a un usuario (si lo necesita, vea mis other answers ).
Hay una sobrecarga para especificar el margen de error como un doble (relativo al valor, no al error absoluto). Para el tipo de Fraction
, vea mi otra respuesta.
Por cierto, si tus fracciones pueden agrandarse, cambia las int
relevantes a long
. Comparado con los otros algoritmos, este es propenso a desbordarse.
Por ejemplo, valores y una comparación con otros algoritmos, ver share
public Fraction RealToFraction(double value, int maxDenominator)
{
// http://www.ics.uci.edu/~eppstein/numth/frap.c
// Find rational approximation to given real number
// David Eppstein / UC Irvine / 8 Aug 1993
// With corrections from Arno Formella, May 2008
if (value == 0.0)
{
return new Fraction(0, 1);
}
int sign = Math.Sign(value);
if (sign == -1)
{
value = Math.Abs(value);
}
int[,] m = { { 1, 0 }, { 0, 1 } };
int ai = (int) value;
// Find terms until denominator gets too big
while (m[1, 0] * ai + m[1, 1] <= maxDenominator)
{
int t = m[0, 0] * ai + m[0, 1];
m[0, 1] = m[0, 0];
m[0, 0] = t;
t = m[1, 0] * ai + m[1, 1];
m[1, 1] = m[1, 0];
m[1, 0] = t;
value = 1.0 / (value - ai);
// 0x7FFFFFFF = Assumes 32 bit floating point just like in the C implementation.
// This check includes Double.IsInfinity(). Even though C# double is 64 bits,
// the algorithm sometimes fails when trying to increase this value too much. So
// I kept it. Anyway, it works.
if (value > 0x7FFFFFFF)
{
break;
}
ai = (int) value;
}
// Two approximations are calculated: one on each side of the input
// The result of the first one is the current value. Below the other one
// is calculated and it is returned.
ai = (maxDenominator - m[1, 1]) / m[1, 0];
m[0, 0] = m[0, 0] * ai + m[0, 1];
m[1, 0] = m[1, 0] * ai + m[1, 1];
return new Fraction(sign * m[0, 0], m[1, 0]);
}
public Fraction RealToFraction(double value, double accuracy)
{
if (accuracy <= 0.0 || accuracy >= 1.0)
{
throw new ArgumentOutOfRangeException("accuracy", "Must be > 0 and < 1.");
}
int maxDenominator = (int) Math.Ceiling(Math.Abs(1.0 / (value * accuracy)));
if (maxDenominator < 1)
{
maxDenominator = 1;
}
return RealToFraction(value, maxDenominator);
}
No puede representar un decimal recurrente en .net, por lo que ignoraré esa parte de su pregunta.
Solo puede representar una cantidad finita y relativamente pequeña de dígitos.
Hay un algoritmo extremadamente simple:
- tomar decimales
x
- contar el número de dígitos después del punto decimal; llama esto
n
- crea una fracción
(10^n * x) / 10^n
- eliminar los factores comunes del numerador y el denominador.
entonces si tienes 0.44, contarías 2 lugares son el punto decimal - n = 2, y luego escribir
-
(0.44 * 10^2) / 10^2
- =
44 / 100
- factorizar (eliminar el factor común de 4) da
11 / 25
Sé que dijiste que buscaste en línea, pero si te perdiste el siguiente artículo podría ser de alguna ayuda. Incluye un ejemplo de código en Pascal.
Algoritmo para convertir un decimal en una fracción *
Alternativamente, como parte de su biblioteca estándar, Ruby tiene un código que trata con números racionales. Puede convertir de flotadores a racionales y viceversa. Creo que también puedes mirar el código. La documentación se encuentra here . Sé que no estás usando Ruby, pero podría ser útil mirar los algoritmos.
Además, puede llamar al código Ruby desde C # (o incluso escribir código Ruby dentro de un archivo de código C #) si utiliza IronRuby , que se ejecuta en .NET Framework.
* Actualizado a un nuevo enlace ya que parece que la URL original está rota ( http://homepage.smc.edu/kennedy_john/DEC2FRAC.pdf )
Se me ocurre una respuesta muy tardía. El código está tomado de un artículo de Richards publicado en 1981 y escrito en c
.
inline unsigned int richards_solution(double const& x0, unsigned long long& num, unsigned long long& den, double& sign, double const& err = 1e-10){
sign = my::sign(x0);
double g(std::abs(x0));
unsigned long long a(0);
unsigned long long b(1);
unsigned long long c(1);
unsigned long long d(0);
unsigned long long s;
unsigned int iter(0);
do {
s = std::floor(g);
num = a + s*c;
den = b + s*d;
a = c;
b = d;
c = num;
d = den;
g = 1.0/(g-s);
if(err>std::abs(sign*num/den-x0)){ return iter; }
} while(iter++<1e6);
std::cerr<<__PRETTY_FUNCTION__<<" : failed to find a fraction for "<<x0<<std::endl;
return 0;
}
Reescribo aquí mi implementación de btilly_solution :
inline unsigned int btilly_solution(double x, unsigned long long& num, unsigned long long& den, double& sign, double const& err = 1e-10){
sign = my::sign(x);
num = std::floor(std::abs(x));
x = std::abs(x)-num;
unsigned long long lower_n(0);
unsigned long long lower_d(1);
unsigned long long upper_n(1);
unsigned long long upper_d(1);
unsigned long long middle_n;
unsigned long long middle_d;
unsigned int iter(0);
do {
middle_n = lower_n + upper_n;
middle_d = lower_d + upper_d;
if(middle_d*(x+err)<middle_n){
upper_n = middle_n;
upper_d = middle_d;
} else if(middle_d*(x-err)>middle_n) {
lower_n = middle_n;
lower_d = middle_d;
} else {
num = num*middle_d+middle_n;
den = middle_d;
return iter;
}
} while(iter++<1e6);
den = 1;
std::cerr<<__PRETTY_FUNCTION__<<" : failed to find a fraction for "<<x+num<<std::endl;
return 0;
}
Y aquí propongo algunas pruebas con un error de 1e-10
:
------------------------------------------------------ |
btilly 0.166667 0.166667=1/6 in 5 iterations | 1/6
richard 0.166667 0.166667=1/6 in 1 iterations |
------------------------------------------------------ |
btilly 0.333333 0.333333=1/3 in 2 iterations | 1/3
richard 0.333333 0.333333=1/3 in 1 iterations |
------------------------------------------------------ |
btilly 0.142857 0.142857=1/7 in 6 iterations | 1/7
richard 0.142857 0.142857=1/7 in 1 iterations |
------------------------------------------------------ |
btilly 0.714286 0.714286=5/7 in 4 iterations | 5/7
richard 0.714286 0.714286=5/7 in 4 iterations |
------------------------------------------------------ |
btilly 1e-07 1.001e-07=1/9990010 in 9990009 iteration | 0.0000001
richard 1e-07 1e-07=1/10000000 in 1 iterations |
------------------------------------------------------ |
btilly 3.66667 3.66667=11/3 in 2 iterations | 11/3
richard 3.66667 3.66667=11/3 in 3 iterations |
------------------------------------------------------ |
btilly 1.41421 1.41421=114243/80782 in 25 iterations | sqrt(2)
richard 1.41421 1.41421=114243/80782 in 13 iterations |
------------------------------------------------------ |
btilly 3.14159 3.14159=312689/99532 in 317 iterations | pi
richard 3.14159 3.14159=312689/99532 in 7 iterations |
------------------------------------------------------ |
btilly 2.71828 2.71828=419314/154257 in 36 iterations | e
richard 2.71828 2.71828=517656/190435 in 14 iterations |
------------------------------------------------------ |
btilly 0.390885 0.390885=38236/97819 in 60 iterations | random
richard 0.390885 0.390885=38236/97819 in 13 iterations |
Como puede ver, los dos métodos dan más o menos los mismos resultados, pero el de Richards es mucho más eficiente y fácil de implementar.
Editar
Para compilar mi código necesita una diferencia para my::sign
que es simplemente una función que devuelve el signo de una variable. Aquí está mi implementación
namespace my{
template<typename Type> inline constexpr
int sign_unsigned(Type x){ return Type(0)<x; }
template<typename Type> inline constexpr
int sign_signed(Type x){ return (Type(0)<x)-(x<Type(0)); }
template<typename Type> inline constexpr
int sign(Type x) { return std::is_signed<Type>()?sign_signed(x):sign_unsigned(x); }
}
Lo siento
Supongo que esta respuesta se refiere al mismo algoritmo. No vi eso antes ...
Un decimal recurrente puede representarse por dos decimales finitos: la parte hacia la izquierda antes de la repetición y la parte que se repite. Ej. 1.6181818... = 1.6 + 0.1*(0.18...)
. Piense en esto como a + b * sum(c * 10**-(d*k) for k in range(1, infinity))
(en notación de Python aquí). En mi ejemplo, a=1.6
, b=0.1
, c=18
, d=2
(el número de dígitos en c
). La suma infinita se puede simplificar ( sum(r**k for r in range(1, infinity)) == r / (1 - r)
si recuerdo correctamente), produciendo a + b * (c * 10**-d) / (1 - c * 10**-d))
, una relación finita. Es decir, comienza con a
, b
, c
y d
como números racionales, y terminas con otro.
(Esto elabora la respuesta de Kirk Broadhurst, que es correcta hasta donde llega, pero no cubre la repetición de decimales. No prometo que no cometí ningún error anteriormente, aunque estoy seguro de que el enfoque general funciona).
(Código mejorado feb 2017 - desplácese hacia abajo a ''optimización'' ...)
(tabla de comparación de algoritmo al final de esta respuesta)
Implementé la respuesta de Btilly en C # y ...
- soporte adicional para números negativos
- proporcionar un parámetro de
accuracy
para especificar el máximo. error relativo, no el máximo. error absoluto;0.01
encontraría una fracción dentro del 1% del valor. - proporcionar una optimización
-
Double.NaN
yDouble.Infinity
no son compatibles; es posible que desee manejarlos ( ejemplo aquí ).
public Fraction RealToFraction(double value, double accuracy)
{
if (accuracy <= 0.0 || accuracy >= 1.0)
{
throw new ArgumentOutOfRangeException("accuracy", "Must be > 0 and < 1.");
}
int sign = Math.Sign(value);
if (sign == -1)
{
value = Math.Abs(value);
}
// Accuracy is the maximum relative error; convert to absolute maxError
double maxError = sign == 0 ? accuracy : value * accuracy;
int n = (int) Math.Floor(value);
value -= n;
if (value < maxError)
{
return new Fraction(sign * n, 1);
}
if (1 - maxError < value)
{
return new Fraction(sign * (n + 1), 1);
}
// The lower fraction is 0/1
int lower_n = 0;
int lower_d = 1;
// The upper fraction is 1/1
int upper_n = 1;
int upper_d = 1;
while (true)
{
// The middle fraction is (lower_n + upper_n) / (lower_d + upper_d)
int middle_n = lower_n + upper_n;
int middle_d = lower_d + upper_d;
if (middle_d * (value + maxError) < middle_n)
{
// real + error < middle : middle is our new upper
upper_n = middle_n;
upper_d = middle_d;
}
else if (middle_n < (value - maxError) * middle_d)
{
// middle < real - error : middle is our new lower
lower_n = middle_n;
lower_d = middle_d;
}
else
{
// Middle is our best fraction
return new Fraction((n * middle_d + middle_n) * sign, middle_d);
}
}
}
El tipo de Fraction
es simplemente una estructura simple. Por supuesto, use su propio tipo preferido ... (Me gusta este por Rick Davin).
public struct Fraction
{
public Fraction(int n, int d)
{
N = n;
D = d;
}
public int N { get; private set; }
public int D { get; private set; }
}
Febrero de 2017 optimización
Para ciertos valores, como 0.01
, 0.001
, etc., el algoritmo pasa por cientos o miles de iteraciones lineales. Para solucionar esto, implementé una forma binaria de encontrar el valor final, gracias a esta idea. Dentro de la indicación if
sustituya lo siguiente:
// real + error < middle : middle is our new upper
Seek(ref upper_n, ref upper_d, lower_n, lower_d, (un, ud) => (lower_d + ud) * (value + maxError) < (lower_n + un));
y
// middle < real - error : middle is our new lower
Seek(ref lower_n, ref lower_d, upper_n, upper_d, (ln, ld) => (ln + upper_n) < (value - maxError) * (ld + upper_d));
Aquí está la implementación del método Seek
:
/// <summary>
/// Binary seek for the value where f() becomes false.
/// </summary>
void Seek(ref int a, ref int b, int ainc, int binc, Func<int, int, bool> f)
{
a += ainc;
b += binc;
if (f(a, b))
{
int weight = 1;
do
{
weight *= 2;
a += ainc * weight;
b += binc * weight;
}
while (f(a, b));
do
{
weight /= 2;
int adec = ainc * weight;
int bdec = binc * weight;
if (!f(a - adec, b - bdec))
{
a -= adec;
b -= bdec;
}
}
while (weight > 1);
}
}
Tabla de comparación de algoritmos
Es posible que desee copiar la tabla en su editor de texto para verla en pantalla completa.
Accuracy: 1.0E-3 | Stern-Brocot OPTIMIZED | Eppstein | Richards
Input | Result Error Iterations Iterations | Result Error Iterations | Result Error Iterations
======================| =====================================================| =========================================| =========================================
0 | 0/1 (zero) 0 0 0 | 0/1 (zero) 0 0 | 0/1 (zero) 0 0
1 | 1/1 0 0 0 | 1001/1000 1.0E-3 1 | 1/1 0 0
3 | 3/1 0 0 0 | 1003/334 1.0E-3 1 | 3/1 0 0
-1 | -1/1 0 0 0 | -1001/1000 1.0E-3 1 | -1/1 0 0
-3 | -3/1 0 0 0 | -1003/334 1.0E-3 1 | -3/1 0 0
0.999999 | 1/1 1.0E-6 0 0 | 1000/1001 -1.0E-3 2 | 1/1 1.0E-6 0
-0.999999 | -1/1 1.0E-6 0 0 | -1000/1001 -1.0E-3 2 | -1/1 1.0E-6 0
1.000001 | 1/1 -1.0E-6 0 0 | 1001/1000 1.0E-3 1 | 1/1 -1.0E-6 0
-1.000001 | -1/1 -1.0E-6 0 0 | -1001/1000 1.0E-3 1 | -1/1 -1.0E-6 0
0.50 (1/2) | 1/2 0 1 1 | 999/1999 -5.0E-4 2 | 1/2 0 1
0.33... (1/3) | 1/3 0 2 2 | 999/2998 -3.3E-4 2 | 1/3 0 1
0.67... (2/3) | 2/3 0 2 2 | 999/1498 3.3E-4 3 | 2/3 0 2
0.25 (1/4) | 1/4 0 3 3 | 999/3997 -2.5E-4 2 | 1/4 0 1
0.11... (1/9) | 1/9 0 8 4 | 999/8992 -1.1E-4 2 | 1/9 0 1
0.09... (1/11) | 1/11 0 10 5 | 999/10990 -9.1E-5 2 | 1/11 0 1
0.62... (307/499) | 8/13 2.5E-4 5 5 | 913/1484 -2.2E-6 8 | 8/13 2.5E-4 5
0.14... (33/229) | 15/104 8.7E-4 20 9 | 974/6759 -4.5E-6 6 | 16/111 2.7E-4 3
0.05... (33/683) | 7/145 -8.4E-4 24 10 | 980/20283 1.5E-6 7 | 10/207 -1.5E-4 4
0.18... (100/541) | 17/92 -3.3E-4 11 10 | 939/5080 -2.0E-6 8 | 17/92 -3.3E-4 4
0.06... (33/541) | 5/82 -3.7E-4 19 8 | 995/16312 -1.9E-6 6 | 5/82 -3.7E-4 4
0.1 | 1/10 0 9 5 | 999/9991 -1.0E-4 2 | 1/10 0 1
0.2 | 1/5 0 4 3 | 999/4996 -2.0E-4 2 | 1/5 0 1
0.3 | 3/10 0 5 5 | 998/3327 -1.0E-4 4 | 3/10 0 3
0.4 | 2/5 0 3 3 | 999/2497 2.0E-4 3 | 2/5 0 2
0.5 | 1/2 0 1 1 | 999/1999 -5.0E-4 2 | 1/2 0 1
0.6 | 3/5 0 3 3 | 1000/1667 -2.0E-4 4 | 3/5 0 3
0.7 | 7/10 0 5 5 | 996/1423 -1.0E-4 4 | 7/10 0 3
0.8 | 4/5 0 4 3 | 997/1246 2.0E-4 3 | 4/5 0 2
0.9 | 9/10 0 9 5 | 998/1109 -1.0E-4 4 | 9/10 0 3
0.01 | 1/100 0 99 8 | 999/99901 -1.0E-5 2 | 1/100 0 1
0.001 | 1/1000 0 999 11 | 999/999001 -1.0E-6 2 | 1/1000 0 1
0.0001 | 1/9991 9.0E-4 9990 15 | 999/9990001 -1.0E-7 2 | 1/10000 0 1
1E-05 | 1/99901 9.9E-4 99900 18 | 1000/99999999 1.0E-8 3 | 1/99999 1.0E-5 1
0.33333333333 | 1/3 1.0E-11 2 2 | 1000/3001 -3.3E-4 2 | 1/3 1.0E-11 1
0.3 | 3/10 0 5 5 | 998/3327 -1.0E-4 4 | 3/10 0 3
0.33 | 30/91 -1.0E-3 32 8 | 991/3003 1.0E-5 3 | 33/100 0 2
0.333 | 167/502 -9.9E-4 169 11 | 1000/3003 1.0E-6 3 | 333/1000 0 2
0.7777 | 7/9 1.0E-4 5 4 | 997/1282 -1.1E-5 4 | 7/9 1.0E-4 3
0.101 | 10/99 1.0E-4 18 10 | 919/9099 1.1E-6 5 | 10/99 1.0E-4 3
0.10001 | 1/10 -1.0E-4 9 5 | 1/10 -1.0E-4 4 | 1/10 -1.0E-4 2
0.100000001 | 1/10 -1.0E-8 9 5 | 1000/9999 1.0E-4 3 | 1/10 -1.0E-8 2
0.001001 | 1/999 1.0E-6 998 11 | 1/999 1.0E-6 3 | 1/999 1.0E-6 1
0.0010000001 | 1/1000 -1.0E-7 999 11 | 1000/999999 9.0E-7 3 | 1/1000 -1.0E-7 2
0.11 | 10/91 -1.0E-3 18 9 | 1000/9091 -1.0E-5 4 | 10/91 -1.0E-3 2
0.1111 | 1/9 1.0E-4 8 4 | 1000/9001 -1.1E-5 2 | 1/9 1.0E-4 1
0.111111111111 | 1/9 1.0E-12 8 4 | 1000/9001 -1.1E-4 2 | 1/9 1.0E-12 1
1 | 1/1 0 0 0 | 1001/1000 1.0E-3 1 | 1/1 0 0
-1 | -1/1 0 0 0 | -1001/1000 1.0E-3 1 | -1/1 0 0
-0.5 | -1/2 0 1 1 | -999/1999 -5.0E-4 2 | -1/2 0 1
3.14 | 22/7 9.1E-4 6 4 | 964/307 2.1E-5 3 | 22/7 9.1E-4 1
3.1416 | 22/7 4.0E-4 6 4 | 732/233 9.8E-6 3 | 22/7 4.0E-4 1
3.14... (pi) | 22/7 4.0E-4 6 4 | 688/219 -1.3E-5 4 | 22/7 4.0E-4 1
0.14 | 7/50 0 13 7 | 995/7107 2.0E-5 3 | 7/50 0 2
0.1416 | 15/106 -6.4E-4 21 8 | 869/6137 9.2E-7 5 | 16/113 -5.0E-5 2
2.72... (e) | 68/25 6.3E-4 7 7 | 878/323 -5.7E-6 8 | 87/32 1.7E-4 5
0.141592653589793 | 15/106 -5.9E-4 21 8 | 991/6999 -7.0E-6 4 | 15/106 -5.9E-4 2
-1.33333333333333 | -4/3 2.5E-15 2 2 | -1001/751 -3.3E-4 2 | -4/3 2.5E-15 1
-1.3 | -13/10 0 5 5 | -992/763 1.0E-4 3 | -13/10 0 2
-1.33 | -97/73 -9.3E-4 26 8 | -935/703 1.1E-5 3 | -133/100 0 2
-1.333 | -4/3 2.5E-4 2 2 | -1001/751 -8.3E-5 2 | -4/3 2.5E-4 1
-1.33333337 | -4/3 -2.7E-8 2 2 | -999/749 3.3E-4 3 | -4/3 -2.7E-8 2
-1.7 | -17/10 0 5 5 | -991/583 -1.0E-4 4 | -17/10 0 3
-1.37 | -37/27 2.7E-4 7 7 | -996/727 1.0E-5 7 | -37/27 2.7E-4 5
-1.33337 | -4/3 -2.7E-5 2 2 | -999/749 3.1E-4 3 | -4/3 -2.7E-5 2
0.047619 | 1/21 1.0E-6 20 6 | 1000/21001 -4.7E-5 2 | 1/21 1.0E-6 1
12.125 | 97/8 0 7 4 | 982/81 -1.3E-4 2 | 97/8 0 1
5.5 | 11/2 0 1 1 | 995/181 -5.0E-4 2 | 11/2 0 1
0.1233333333333 | 9/73 -3.7E-4 16 8 | 971/7873 -3.4E-6 4 | 9/73 -3.7E-4 2
0.7454545454545 | 38/51 -4.8E-4 15 8 | 981/1316 -1.9E-5 6 | 38/51 -4.8E-4 4
0.01024801004 | 2/195 8.2E-4 98 9 | 488/47619 2.0E-8 13 | 2/195 8.2E-4 3
0.99011 | 91/92 -9.9E-4 91 8 | 801/809 1.3E-6 5 | 100/101 -1.1E-5 2
0.9901134545 | 91/92 -9.9E-4 91 8 | 601/607 1.9E-6 5 | 100/101 -1.5E-5 2
0.19999999 | 1/5 5.0E-8 4 3 | 1000/5001 -2.0E-4 2 | 1/5 5.0E-8 1
0.20000001 | 1/5 -5.0E-8 4 3 | 1000/4999 2.0E-4 3 | 1/5 -5.0E-8 2
5.0183168565E-05 | 1/19908 9.5E-4 19907 16 | 1000/19927001 -5.0E-8 2 | 1/19927 5.2E-12 1
3.909E-07 | 1/2555644 1.0E-3 2555643 23 | 1/1 2.6E6 (!) 1 | 1/2558199 1.1E-8 1
88900003.001 |88900003/1 -1.1E-11 0 0 |88900004/1 1.1E-8 1 |88900003/1 -1.1E-11 0
0.26... (5/19) | 5/19 0 7 6 | 996/3785 -5.3E-5 4 | 5/19 0 3
0.61... (37/61) | 17/28 9.7E-4 8 7 | 982/1619 -1.7E-5 8 | 17/28 9.7E-4 5
| | |
Accuracy: 1.0E-4 | Stern-Brocot OPTIMIZED | Eppstein | Richards
Input | Result Error Iterations Iterations | Result Error Iterations | Result Error Iterations
======================| =====================================================| =========================================| =========================================
0.62... (307/499) | 227/369 -8.8E-5 33 11 | 9816/15955 -2.0E-7 8 | 299/486 -6.7E-6 6
0.05... (33/683) | 23/476 6.4E-5 27 12 | 9989/206742 1.5E-7 7 | 23/476 6.4E-5 5
0.06... (33/541) | 28/459 6.6E-5 24 12 | 9971/163464 -1.9E-7 6 | 33/541 0 5
1E-05 | 1/99991 9.0E-5 99990 18 | 10000/999999999 1.0E-9 3 | 1/99999 1.0E-5 1
0.333 | 303/910 -9.9E-5 305 12 | 9991/30003 1.0E-7 3 | 333/1000 0 2
0.7777 | 556/715 -1.0E-4 84 12 | 7777/10000 0 8 | 1109/1426 -1.8E-7 4
3.14... (pi) | 289/92 -9.2E-5 19 8 | 9918/3157 -8.1E-7 4 | 333/106 -2.6E-5 2
2.72... (e) | 193/71 1.0E-5 10 9 | 9620/3539 6.3E-8 11 | 193/71 1.0E-5 7
0.7454545454545 | 41/55 6.1E-14 16 8 | 9960/13361 -1.8E-6 6 | 41/55 6.1E-14 5
0.01024801004 | 7/683 8.7E-5 101 12 | 9253/902907 -1.3E-10 16 | 7/683 8.7E-5 5
0.99011 | 100/101 -1.1E-5 100 8 | 901/910 -1.1E-7 6 | 100/101 -1.1E-5 2
0.9901134545 | 100/101 -1.5E-5 100 8 | 8813/8901 1.6E-8 7 | 100/101 -1.5E-5 2
0.26... (5/19) | 5/19 0 7 6 | 9996/37985 -5.3E-6 4 | 5/19 0 3
0.61... (37/61) | 37/61 0 10 8 | 9973/16442 -1.6E-6 8 | 37/61 0 7
Comparación de rendimiento
Realicé pruebas de velocidad detalladas y tracé los resultados. No mirando la calidad y solo la velocidad:
- La optimización de Stern-Brocot lo reduce a lo sumo a un factor 2, pero el Stern-Brocot original puede ser cientos o miles de veces más lento cuando alcanza los desafortunados valores mencionados. Sin embargo, solo hay un par de microsegundos por llamada.
- Richards es consistentemente rápido.
- Eppstein es alrededor de 3 veces más lento que los demás.
Stern-Brocot y Richards compararon:
- Ambos devuelven buenas fracciones.
- Richards a menudo resulta en un error menor. También es un poco más rápido.
- Stern-Brocot camina por el árbol SB. Encuentra la fracción del denominador más bajo que cumple con la precisión requerida, luego se detiene.
Si no necesita la fracción de denominador más baja, Richards es una buena opción.
Simple solution/breakdown of repeating decimal.
Tomé la lógica de que los números del 1 al 9 divididos por 9 se repiten. AKA 7/9 = .77777
Mi solución sería multiplicar el número entero por 9, agregar el número que se repite y luego dividir por 9 nuevamente.
Ex: 28.66666
28*9=252
252+6=258
258/9=28.66666
Este método es bastante fácil de programar también. Trunque el dígito decimal, multiplique por 9, agregue el primer decimal, luego divida por 9.
Lo único que falta es que la fracción puede necesitar ser simplificada si el número de la izquierda es divisible por 3.
Aquí hay dos conversiones Swift 4 de respuestas populares a este problema:
public func decimalToFraction(_ d: Double) -> (Int, Int) {
var df: Double = 1
var top: Int = 1
var bot: Int = 1
while df != d {
if df < d {
top += 1
} else {
bot += 1
top = Int(d * bot)
}
df = top / bot
}
return (top, bot)
}
public func realToFraction(_ value: Double, accuracy: Double = 0.00005) -> (Int, Int)? {
var value = value
guard accuracy >= 0 && accuracy <= 1 else {
Swift.print(accuracy, "Must be > 0 and < 1.")
return nil
}
let theSign = sign(value)
if theSign == -1 {
value = abs(value)
}
// Accuracy is the maximum relative error; convert to absolute maxError
let maxError = theSign == 0 ? accuracy : value * accuracy
let n = floor(value)
value -= n
if value < maxError {
return (Int(theSign * n), 1)
}
if 1 - maxError < value {
return (Int(theSign * (n + 1)), 1)
}
// The lower fraction is 0/1
var lowerN: Double = 0
var lowerD: Double = 1
// The upper fraction is 1/1
var upperN: Double = 1
var upperD: Double = 1
while true {
// The middle fraction is (lowerN + upperN) / (lowerD + upperD)
let middleN = lowerN + upperN
let middleD = lowerD + upperD
if middleD * (value + maxError) < middleN {
// real + error < middle : middle is our new upper
upperN = middleN
upperD = middleD
} else if middleN < (value - maxError) * middleD {
// middle < real - error : middle is our new lower
lowerN = middleN
lowerD = middleD
} else {
// Middle is our best fraction
return (Int(n * middleD + middleN * theSign), Int(middleD))
}
}
}
Here''s an algorithm I wrote for a project not too long ago. It takes a different approach, which is more akin to something you would do by hand. I can''t guarantee its efficiency, but it gets the job done.
public static string toFraction(string exp) {
double x = Convert.ToDouble(exp);
int sign = (Math.Abs(x) == x) ? 1 : -1;
x = Math.Abs(x);
int n = (int)x; // integer part
x -= n; // fractional part
int mult, nm, dm;
int decCount = 0;
Match m = Regex.Match(Convert.ToString(x), @"([0-9]+?)/1+.?$");
// repeating fraction
if (m.Success) {
m = Regex.Match(m.Value, @"([0-9]+?)(?=/1)");
mult = (int)Math.Pow(10, m.Length);
// We have our basic fraction
nm = (int)Math.Round(((x * mult) - x));
dm = mult - 1;
}
// get the number of decimal places
else {
double t = x;
while (t != 0) {
decCount++;
t *= 10;
t -= (int)t;
}
mult = (int)Math.Pow(10, decCount);
// We have our basic fraction
nm = (int)((x * mult));
dm = mult;
}
// can''t be simplified
if (nm < 0 || dm < 0) return exp;
//Simplify
Stack factors = new Stack();
for (int i = 2; i < nm + 1; i++) {
if (nm % i == 0) factors.Push(i); // i is a factor of the numerator
}
// check against the denominator, stopping at the highest match
while(factors.Count != 0) {
// we have a common factor
if (dm % (int)factors.Peek() == 0) {
int f = (int)factors.Pop();
nm /= f;
dm /= f;
break;
}
else factors.Pop();
}
nm += (n * dm);
nm *= sign;
if (dm == 1) return Convert.ToString(nm);
else return Convert.ToString(nm) + "/" + Convert.ToString(dm);
}
Here''s an algorithm implemented in VB that converts Floating Point Decimal to Integer Fraction that I wrote many years ago.
Basically you start with a numerator = 0 and a denominator = 1, then if the quotient is less than the decimal input, add 1 to the numerator and if the quotient is greater than the decimal input, add 1 to the denominator. Repeat until you get within your desired precision.
Here, you can have the method for converting Decimal into Fractions:
/// <summary>
/// Converts Decimals into Fractions.
/// </summary>
/// <param name="value">Decimal value</param>
/// <returns>Fraction in string type</returns>
public string DecimalToFraction(double value)
{
string result;
double numerator, realValue = value;
int num, den, decimals, length;
num = (int)value;
value = value - num;
value = Math.Round(value, 5);
length = value.ToString().Length;
decimals = length - 2;
numerator = value;
for (int i = 0; i < decimals; i++)
{
if (realValue < 1)
{
numerator = numerator * 10;
}
else
{
realValue = realValue * 10;
numerator = realValue;
}
}
den = length - 2;
string ten = "1";
for (int i = 0; i < den; i++)
{
ten = ten + "0";
}
den = int.Parse(ten);
num = (int)numerator;
result = SimplifiedFractions(num, den);
return result;
}
/// <summary>
/// Converts Fractions into Simplest form.
/// </summary>
/// <param name="num">Numerator</param>
/// <param name="den">Denominator</param>
/// <returns>Simplest Fractions in string type</returns>
string SimplifiedFractions(int num, int den)
{
int remNum, remDen, counter;
if (num > den)
{
counter = den;
}
else
{
counter = num;
}
for (int i = 2; i <= counter; i++)
{
remNum = num % i;
if (remNum == 0)
{
remDen = den % i;
if (remDen == 0)
{
num = num / i;
den = den / i;
i--;
}
}
}
return num.ToString() + "/" + den.ToString();
}
}
I recently had to perform this very task of working with a Decimal Data Type which is stored in our SQL Server database. At the Presentation Layer this value was edited as a fractional value in a TextBox. The complexity here was working with the Decimal Data Type which holds some pretty large values in comparison to int or long. So to reduce the opportunity for data overrun, I stuck with the Decimal Data Type throughout the conversion.
Before I begin, I want to comment on Kirk''s previous answer. He is absolutely correct as long as there are no assumptions made. However, if the developer only looks for repeating patterns within the confines of the Decimal Data Type .3333333... can be represented as 1/3. An example of the algorithm can be found at basic-mathematics.com . Again, this means you have to make assumptions based on the information available and using this method only captures a very small subset of repeating decimals. However for small numbers should be okay.
Moving forward, let me give you a snapshot of my solution. If you want to read a complete example with additional code I created a blog post with much more detail.
Convert Decimal Data Type to a String Fraction
public static void DecimalToFraction(decimal value, ref decimal sign, ref decimal numerator, ref decimal denominator)
{
const decimal maxValue = decimal.MaxValue / 10.0M;
// e.g. .25/1 = (.25 * 100)/(1 * 100) = 25/100 = 1/4
var tmpSign = value < decimal.Zero ? -1 : 1;
var tmpNumerator = Math.Abs(value);
var tmpDenominator = decimal.One;
// While numerator has a decimal value
while ((tmpNumerator - Math.Truncate(tmpNumerator)) > 0 &&
tmpNumerator < maxValue && tmpDenominator < maxValue)
{
tmpNumerator = tmpNumerator * 10;
tmpDenominator = tmpDenominator * 10;
}
tmpNumerator = Math.Truncate(tmpNumerator); // Just in case maxValue boundary was reached.
ReduceFraction(ref tmpNumerator, ref tmpDenominator);
sign = tmpSign;
numerator = tmpNumerator;
denominator = tmpDenominator;
}
public static string DecimalToFraction(decimal value)
{
var sign = decimal.One;
var numerator = decimal.One;
var denominator = decimal.One;
DecimalToFraction(value, ref sign, ref numerator, ref denominator);
return string.Format("{0}/{1}", (sign * numerator).ToString().TruncateDecimal(),
denominator.ToString().TruncateDecimal());
}
This is pretty straight forward where the DecimalToFraction(decimal value) is nothing more than a simplified entry point for the first method which provides access to all the components which compose a fraction. If you have a decimal of .325 then divide it by 10 to the power of number of decimal places. Lastly reduce the fraction. And, in this example .325 = 325/10^3 = 325/1000 = 13/40.
Next, going the other direction.
Convert String Fraction to Decimal Data Type
static readonly Regex FractionalExpression = new Regex(@"^(?<sign>[-])?(?<numerator>/d+)(/(?<denominator>/d+))?$");
public static decimal? FractionToDecimal(string fraction)
{
var match = FractionalExpression.Match(fraction);
if (match.Success)
{
// var sign = Int32.Parse(match.Groups["sign"].Value + "1");
var numerator = Int32.Parse(match.Groups["sign"].Value + match.Groups["numerator"].Value);
int denominator;
if (Int32.TryParse(match.Groups["denominator"].Value, out denominator))
return denominator == 0 ? (decimal?)null : (decimal)numerator / denominator;
if (numerator == 0 || numerator == 1)
return numerator;
}
return null;
}
Converting back to a decimal is quite simple as well. Here we parse out the fractional components, store them in something we can work with (here decimal values) and perform our division.
If I were you I''d handle the "no repeating decimals in .NET" problem by having it convert strings with the recurrence marked somehow.
Eg 1/3 could be represented "0.R3" 1/60 could be represented "0.01R6"
I''d require an explicit cast from double or decimal because such values could only be converted into a fraction that was close. Implicit cast from int is ok.
You could use a struct and store your fraction (f) in two longs p and q such that f=p/q, q!=0, and gcd(p, q) == 1.
My 2 cents. Here''s VB.NET version of btilly''s excellent algorithm:
Public Shared Sub float_to_fraction(x As Decimal, ByRef Numerator As Long, ByRef Denom As Long, Optional ErrMargin As Decimal = 0.001)
Dim n As Long = Int(Math.Floor(x))
x -= n
If x < ErrMargin Then
Numerator = n
Denom = 1
Return
ElseIf x >= 1 - ErrMargin Then
Numerator = n + 1
Denom = 1
Return
End If
'' The lower fraction is 0/1
Dim lower_n As Integer = 0
Dim lower_d As Integer = 1
'' The upper fraction is 1/1
Dim upper_n As Integer = 1
Dim upper_d As Integer = 1
Dim middle_n, middle_d As Decimal
While True
'' The middle fraction is (lower_n + upper_n) / (lower_d + upper_d)
middle_n = lower_n + upper_n
middle_d = lower_d + upper_d
'' If x + error < middle
If middle_d * (x + ErrMargin) < middle_n Then
'' middle is our new upper
upper_n = middle_n
upper_d = middle_d
'' Else If middle < x - error
ElseIf middle_n < (x - ErrMargin) * middle_d Then
'' middle is our new lower
lower_n = middle_n
lower_d = middle_d
'' Else middle is our best fraction
Else
Numerator = n * middle_d + middle_n
Denom = middle_d
Return
End If
End While
End Sub
The most populair solutions to this problem are Richards'' algorithm and the Stern-Brocot algorithm , implemented by btilly with speed optimalization by btilly and Jay Zed. Richards'' algorithm is the fastest, but does not guarantee to return the best fraction.
I have an solution to this problem which always gives the best fraction and is also faster than all of the algorithms above. Here is the algorithm in C# (explanation and speed test below).
This is a short algorithm without comments. An complete version is provided in the source code at the end.
public static Fraction DoubleToFractionSjaak(double value, double accuracy)
{
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
int a = 0;
int b = 1;
int c = 1;
int d = (int)(1 / maximumvalue);
while (true)
{
int n = (int)((b * minimalvalue - a) / (c - d * minimalvalue));
if (n == 0) break;
a += n * c;
b += n * d;
n = (int)((c - d * maximumvalue) / (b * maximumvalue - a));
if (n == 0) break;
c += n * a;
d += n * b;
}
int denominator = b + d;
return new Fraction(sign * (integerpart * denominator + (a + c)), denominator);
}
Where Fraction is a simple class to store a fraction, like the following:
public class Fraction
{
public int Numerator { get; private set; }
public int Denominator { get; private set; }
public Fraction(int numerator, int denominator)
{
Numerator = numerator;
Denominator = denominator;
}
}
Cómo funciona
Like the other solutions mentioned, my solution is based on continued fraction. Other solutions like the one from Eppstein or solutions based on repeating decimals proved to be slower and/or give suboptimal results.
Continued fraction
Solutions based on continued fraction are mostly based on two algorithms, both described in an article by Ian Richards published here in 1981. He called them the “slow continued fraction algorithm” and the “fast continued fraction algorithm”. The first is known as the the Stern-Brocot algorithm while the latter is known as Richards'' algorithm.
My algorithm (short explanation)
To fully understand my algorithm, you need to have read the article by Ian Richards or at least understand what a Farey pair is. Furthermore, read the algorithm with comments at the end of this article.
The algorithm is using a Farey pair, containing a left and a right fraction. By repeatedly taking the mediant it is closing in on the target value. This is just like the slow algorithm but there are two major differences:
- Multiple iterations are performed at once as long as the mediant stay on one side of the target value.
- The left and right fraction cannot come closer to the target value than the given accuracy.
Alternately the right and left side of the target value are checked. If the algorithm cannot produce a result closer to the target value, the process ends. The resulting mediant is the optimal solution.
Speed test
I did some speed tests on my laptop with the following algorithms:
- Improved slow algorithm by Kay Zed and btilly
- John Kennedy''s implementation of the Fast algorithm, converted to C# by Kay Zed
- My implementation of the Fast algorithm (close to the original by Ian Richards)
- Jeremy Herrman''s implementation of the Fast algorithm
- My algorithm above
I omitted the original slow algorithm by btilly , because of its bad worst-case performance.
Test set
I choose a set of target values (very arbitrary) and calculated the fraction 100000 times with 5 different accuracies. Because possible some (future) algorithms couldn''t handle improper fractions, only target values from 0.0 to 1.0 were tested. The accuracy was taken from the range from 2 to 6 decimal places (0.005 to 0.0000005). The following set was used:
0.999999, 0.000001, 0.25
0.33, 0.333, 0.3333, 0.33333, 0.333333, 0.333333333333,
0.666666666666, 0.777777777777, 0.090909090909, 0.263157894737,
0.606557377049, 0.745454545454, 0.000050183168565,
pi - 3, e - 2.0, sqrt(2) - 1
Resultados
I did 13 test runs. The result is in milliseconds needed for the whole data set.
Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Run 11 Run 12 Run 13
1. 9091 9222 9070 9111 9091 9108 9293 9118 9115 9113 9102 9143 9121
2. 7071 7125 7077 6987 7126 6985 7037 6964 7023 6980 7053 7050 6999
3. 6903 7059 7062 6891 6942 6880 6882 6918 6853 6918 6893 6993 6966
4. 7546 7554 7564 7504 7483 7529 7510 7512 7517 7719 7513 7520 7514
5. 6839 6951 6882 6836 6854 6880 6846 7017 6874 6867 6828 6848 6864
Conclusion (skipping the analysis)
Even without a statistical analysis, it''s easy to see that my algorithm is faster than the other tested algorithms. The difference with the fastest variant of “fast algorithm” however is less than 1 percent. The Improved slow algorithm is 30%-35% slower than the fastest algorithm”.
On the other hand, even the slowest algorithm performs a calculation on average in less than a microsecond. So under normal circumstances speed is not really an issue. In my opinion the best algorithm is mainly a matter of taste, so choose any of the tested algorithms on other criteria.
- Does the algorithm gives the best result?
- Is the algorithm available in my favorite language?
- What is the code size of the algorithm?
- Is the algorithm readable, understandable?
Código fuente
The source code below contains all used algorithms. Incluye:
- My original algorithm (with comments)
- A even faster version of my algorithm (but less readable)
- The original slow algorithm
- All tested algorithms
public class DoubleToFraction
{
// ===================================================
// Sjaak algorithm - original version
//
public static Fraction SjaakOriginal(double value, double accuracy)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// The left fraction (a/b) is initially (0/1), the right fraction (c/d) is initially (1/1)
// Together they form a Farey pair.
// We will keep the left fraction below the minimumvalue and the right fraction above the maximumvalue
int a = 0;
int b = 1;
int c = 1;
int d = (int)(1 / maximumvalue);
// The first interation is performed above. Calculate maximum n where (n*a+c)/(n*b+d) >= maximumvalue
// This is the same as n <= 1/maximumvalue - 1, d will become n+1 = floor(1/maximumvalue)
// repeat forever (at least until we cannot close in anymore)
while (true)
{
// Close in from the left n times.
// Calculate maximum n where (a+n*c)/(b+n*d) <= minimalvalue
// This is the same as n <= (b * minimalvalue - a) / (c-d*minimalvalue)
int n = (int)((b * minimalvalue - a) / (c - d * minimalvalue));
// If we cannot close in from the left (and also not from the right anymore) the loop ends
if (n == 0) break;
// Update left fraction
a += n * c;
b += n * d;
// Close in from the right n times.
// Calculate maximum n where (n*a+c)/(n*b+d) >= maximumvalue
// This is the same as n <= (c - d * maximumvalue) / (b * maximumvalue - a)
n = (int)((c - d * maximumvalue) / (b * maximumvalue - a));
// If we cannot close in from the right (and also not from the left anymore) the loop ends
if (n == 0) break;
// Update right fraction
c += n * a;
d += n * b;
}
// We cannot close in anymore
// The best fraction will be the mediant of the left and right fraction = (a+c)/(b+d)
int denominator = b + d;
return new Fraction(sign * (integerpart * denominator + (a + c)), denominator);
}
// ===================================================
// Sjaak algorithm - faster version
//
public static Fraction SjaakFaster(double value, double accuracy)
{
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
//int a = 0;
int b = 1;
//int c = 1;
int d = (int)(1 / maximumvalue);
double left_n = minimalvalue; // b * minimalvalue - a
double left_d = 1.0 - d * minimalvalue; // c - d * minimalvalue
double right_n = 1.0 - d * maximumvalue; // c - d * maximumvalue
double right_d = maximumvalue; // b * maximumvalue - a
while (true)
{
if (left_n < left_d) break;
int n = (int)(left_n / left_d);
//a += n * c;
b += n * d;
left_n -= n * left_d;
right_d -= n * right_n;
if (right_n < right_d) break;
n = (int)(right_n / right_d);
//c += n * a;
d += n * b;
left_d -= n * left_n;
right_n -= n * right_d;
}
int denominator = b + d;
int numerator = (int)(value * denominator + 0.5);
return new Fraction(sign * (integerpart * denominator + numerator), denominator);
}
// ===================================================
// Original Farley - Implemented by btilly
//
public static Fraction OriginalFarley(double value, double accuracy)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// The lower fraction is 0/1
int lower_numerator = 0;
int lower_denominator = 1;
// The upper fraction is 1/1
int upper_numerator = 1;
int upper_denominator = 1;
while (true)
{
// The middle fraction is (lower_numerator + upper_numerator) / (lower_denominator + upper_denominator)
int middle_numerator = lower_numerator + upper_numerator;
int middle_denominator = lower_denominator + upper_denominator;
if (middle_denominator * maximumvalue < middle_numerator)
{
// real + error < middle : middle is our new upper
upper_numerator = middle_numerator;
upper_denominator = middle_denominator;
}
else if (middle_numerator < minimalvalue * middle_denominator)
{
// middle < real - error : middle is our new lower
lower_numerator = middle_numerator;
lower_denominator = middle_denominator;
}
else
{
return new Fraction(sign * (integerpart * middle_denominator + middle_numerator), middle_denominator);
}
}
}
// ===================================================
// Modified Farley - Implemented by btilly, Kay Zed
//
public static Fraction ModifiedFarley(double value, double accuracy)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// The lower fraction is 0/1
int lower_numerator = 0;
int lower_denominator = 1;
// The upper fraction is 1/1
int upper_numerator = 1;
int upper_denominator = 1;
while (true)
{
// The middle fraction is (lower_numerator + upper_numerator) / (lower_denominator + upper_denominator)
int middle_numerator = lower_numerator + upper_numerator;
int middle_denominator = lower_denominator + upper_denominator;
if (middle_denominator * maximumvalue < middle_numerator)
{
// real + error < middle : middle is our new upper
ModifiedFarleySeek(ref upper_numerator, ref upper_denominator, lower_numerator, lower_denominator, (un, ud) => (lower_denominator + ud) * maximumvalue < (lower_numerator + un));
}
else if (middle_numerator < minimalvalue * middle_denominator)
{
// middle < real - error : middle is our new lower
ModifiedFarleySeek(ref lower_numerator, ref lower_denominator, upper_numerator, upper_denominator, (ln, ld) => (ln + upper_numerator) < minimalvalue * (ld + upper_denominator));
}
else
{
return new Fraction(sign * (integerpart * middle_denominator + middle_numerator), middle_denominator);
}
}
}
private static void ModifiedFarleySeek(ref int a, ref int b, int ainc, int binc, Func<int, int, bool> f)
{
// Binary seek for the value where f() becomes false
a += ainc;
b += binc;
if (f(a, b))
{
int weight = 1;
do
{
weight *= 2;
a += ainc * weight;
b += binc * weight;
}
while (f(a, b));
do
{
weight /= 2;
int adec = ainc * weight;
int bdec = binc * weight;
if (!f(a - adec, b - bdec))
{
a -= adec;
b -= bdec;
}
}
while (weight > 1);
}
}
// ===================================================
// Richards implementation by Jemery Hermann
//
public static Fraction RichardsJemeryHermann(double value, double accuracy, int maxIterations = 20)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// Richards - Implemented by Jemery Hermann
double[] d = new double[maxIterations + 2];
d[1] = 1;
double z = value;
double n = 1;
int t = 1;
while (t < maxIterations && Math.Abs(n / d[t] - value) > accuracy)
{
t++;
z = 1 / (z - (int)z);
d[t] = d[t - 1] * (int)z + d[t - 2];
n = (int)(value * d[t] + 0.5);
}
return new Fraction(sign * (integerpart * (int)d[t] + (int)n), (int)d[t]);
}
// ===================================================
// Richards implementation by Kennedy
//
public static Fraction RichardsKennedy(double value, double accuracy)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// Richards
double z = value;
int previousDenominator = 0;
int denominator = 1;
int numerator;
do
{
z = 1.0 / (z - (int)z);
int temp = denominator;
denominator = denominator * (int)z + previousDenominator;
previousDenominator = temp;
numerator = (int)(value * denominator + 0.5);
}
while (Math.Abs(value - (double)numerator / denominator) > accuracy && z != (int)z);
return new Fraction(sign * (integerpart * denominator + numerator), denominator);
}
// ===================================================
// Richards implementation by Sjaak
//
public static Fraction RichardsOriginal(double value, double accuracy)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// Richards
double z = value;
int denominator0 = 0;
int denominator1 = 1;
int numerator0 = 1;
int numerator1 = 0;
int n = (int)z;
while (true)
{
z = 1.0 / (z - n);
n = (int)z;
int temp = denominator1;
denominator1 = denominator1 * n + denominator0;
denominator0 = temp;
temp = numerator1;
numerator1 = numerator1 * n + numerator0;
numerator0 = temp;
double d = (double)numerator1 / denominator1;
if (d > minimalvalue && d < maximumvalue) break;
}
return new Fraction(sign * (integerpart * denominator1 + numerator1), denominator1);
}
}
Well, seems I finally had to do it myself. I just had to create a program simulating the natural way I would solve it myself. I just submitted the code to codeproject as writing out the whole code here won''t be suitable. You can download the project from here Fraction_Conversion , or look at the codeproject page here .
Así es como funciona:
- Find out whether given decimal is negative
- Convert decimal to absolute value
- Get integer part of given decimal
- Get the decimal part
- Check whether decimal is recurring. If decimal is recurring, we then return the exact recurring decimal
- If decimal is not recurring, start reduction by changing numerator to 10^no. of decimal, else we subtract 1 from numerator
- Then reduce fraction
Code Preview:
private static string dec2frac(double dbl)
{
char neg = '' '';
double dblDecimal = dbl;
if (dblDecimal == (int) dblDecimal) return dblDecimal.ToString(); //return no if it''s not a decimal
if (dblDecimal < 0)
{
dblDecimal = Math.Abs(dblDecimal);
neg = ''-'';
}
var whole = (int) Math.Truncate(dblDecimal);
string decpart = dblDecimal.ToString().Replace(Math.Truncate(dblDecimal) + ".", "");
double rN = Convert.ToDouble(decpart);
double rD = Math.Pow(10, decpart.Length);
string rd = recur(decpart);
int rel = Convert.ToInt32(rd);
if (rel != 0)
{
rN = rel;
rD = (int) Math.Pow(10, rd.Length) - 1;
}
//just a few prime factors for testing purposes
var primes = new[] {41, 43, 37, 31, 29, 23, 19, 17, 13, 11, 7, 5, 3, 2};
foreach (int i in primes) reduceNo(i, ref rD, ref rN);
rN = rN + (whole*rD);
return string.Format("{0}{1}/{2}", neg, rN, rD);
}
Thanks @ Darius for given me an idea of how to solve the recurring decimals :)