visual university stanford recognition neural network net fully for exam cs231n cs231 convolutional conv connected cnn python numpy softmax

python - recognition - stanford university convolutional neural network



CS231n: ¿Cómo calcular el gradiente para la función de pérdida de Softmax? (2)

No estoy seguro de si esto ayuda, pero:

es realmente la función de indicador , como se describe here . Esto forma la expresión (j == y[i]) en el código.

Además, el gradiente de la pérdida con respecto a los pesos es:

dónde

que es el origen de la X[:,i] en el código.

Estoy viendo algunos videos de Stanford CS231: Redes neuronales convolucionales para el reconocimiento visual, pero no entiendo bien cómo calcular el gradiente analítico para la función de pérdida de numpy usando numpy .

A partir de esta respuesta de pila de intercambio , el gradiente de softmax se calcula como:

La implementación de Python para lo anterior es:

num_classes = W.shape[0] num_train = X.shape[1] for i in range(num_train): for j in range(num_classes): p = np.exp(f_i[j])/sum_i dW[j, :] += (p-(j == y[i])) * X[:, i]

¿Alguien podría explicar cómo funciona el fragmento anterior? La implementación detallada para softmax también se incluye a continuación.

def softmax_loss_naive(W, X, y, reg): """ Softmax loss function, naive implementation (with loops) Inputs: - W: C x D array of weights - X: D x N array of data. Data are D-dimensional columns - y: 1-dimensional array of length N with labels 0...K-1, for K classes - reg: (float) regularization strength Returns: a tuple of: - loss as single float - gradient with respect to weights W, an array of same size as W """ # Initialize the loss and gradient to zero. loss = 0.0 dW = np.zeros_like(W) ############################################################################# # Compute the softmax loss and its gradient using explicit loops. # # Store the loss in loss and the gradient in dW. If you are not careful # # here, it is easy to run into numeric instability. Don''t forget the # # regularization! # ############################################################################# # Get shapes num_classes = W.shape[0] num_train = X.shape[1] for i in range(num_train): # Compute vector of scores f_i = W.dot(X[:, i]) # in R^{num_classes} # Normalization trick to avoid numerical instability, per http://cs231n.github.io/linear-classify/#softmax log_c = np.max(f_i) f_i -= log_c # Compute loss (and add to it, divided later) # L_i = - f(x_i)_{y_i} + log /sum_j e^{f(x_i)_j} sum_i = 0.0 for f_i_j in f_i: sum_i += np.exp(f_i_j) loss += -f_i[y[i]] + np.log(sum_i) # Compute gradient # dw_j = 1/num_train * /sum_i[x_i * (p(y_i = j)-Ind{y_i = j} )] # Here we are computing the contribution to the inner sum for a given i. for j in range(num_classes): p = np.exp(f_i[j])/sum_i dW[j, :] += (p-(j == y[i])) * X[:, i] # Compute average loss /= num_train dW /= num_train # Regularization loss += 0.5 * reg * np.sum(W * W) dW += reg*W return loss, dW


Sé que esto es tarde pero aquí está mi respuesta:

Supongo que está familiarizado con la función de pérdida de Softmax cs231n. Lo sabemos:

Así como lo hicimos con la función de pérdida de SVM, los gradientes son los siguientes:

Espero que haya ayudado.