superponer - Calcular días desde el último evento en R
superponer graficas en r (4)
Mi pregunta involucra cómo calcular la cantidad de días desde el último evento que ocurrió en R. A continuación se muestra un ejemplo mínimo de los datos:
df <- data.frame(date=as.Date(c("06/07/2000","15/09/2000","15/10/2000","03/01/2001","17/03/2001","23/05/2001","26/08/2001"), "%d/%m/%Y"),
event=c(0,0,1,0,1,1,0))
date event
1 2000-07-06 0
2 2000-09-15 0
3 2000-10-15 1
4 2001-01-03 0
5 2001-03-17 1
6 2001-05-23 1
7 2001-08-26 0
Una variable binaria (evento) tiene valores 1 que indican que el evento ocurrió y 0 de lo contrario. Las observaciones repetidas se realizan en diferentes momentos ( date
) El resultado esperado es el siguiente con los días desde el último evento ( tae
):
date event tae
1 2000-07-06 0 NA
2 2000-09-15 0 NA
3 2000-10-15 1 0
4 2001-01-03 0 80
5 2001-03-17 1 153
6 2001-05-23 1 67
7 2001-08-26 0 95
He buscado respuestas a problemas similares pero no tratan mi problema específico. He intentado implementar ideas de una publicación similar ( Calcular el tiempo transcurrido desde el último evento ) y a continuación es lo más cercano a la solución:
library(dplyr)
df %>%
mutate(tmp_a = c(0, diff(date)) * !event,
tae = cumsum(tmp_a))
Lo que da como resultado el resultado que se muestra a continuación, no es exactamente el esperado:
date event tmp_a tae
1 2000-07-06 0 0 0
2 2000-09-15 0 71 71
3 2000-10-15 1 0 71
4 2001-01-03 0 80 151
5 2001-03-17 1 0 151
6 2001-05-23 1 0 151
7 2001-08-26 0 95 246
Cualquier ayuda sobre cómo ajustar este u otro enfoque sería muy apreciada.
Es doloroso y pierdes el rendimiento, pero puedes hacerlo con un bucle for
:
datas <- read.table(text = "date event
2000-07-06 0
2000-09-15 0
2000-10-15 1
2001-01-03 0
2001-03-17 1
2001-05-23 1
2001-08-26 0", header = TRUE, stringsAsFactors = FALSE)
datas <- transform(datas, date = as.Date(date))
lastEvent <- NA
tae <- rep(NA, length(datas$event))
for (i in 2:length(datas$event)) {
if (datas$event[i-1] == 1) {
lastEvent <- datas$date[i-1]
}
tae[i] <- datas$date[i] - lastEvent
# To set the first occuring event as 0 and not NA
if (datas$event[i] == 1 && sum(datas$event[1:i-1] == 1) == 0) {
tae[i] <- 0
}
}
cbind(datas, tae)
date event tae
1 2000-07-06 0 NA
2 2000-09-15 0 NA
3 2000-10-15 1 0
4 2001-01-03 0 80
5 2001-03-17 1 153
6 2001-05-23 1 67
7 2001-08-26 0 95
Podrías probar algo como esto:
# make an index of the latest events
last_event_index <- cumsum(df$event) + 1
# shift it by one to the right
last_event_index <- c(1, last_event_index[1:length(last_event_index) - 1])
# get the dates of the events and index the vector with the last_event_index,
# added an NA as the first date because there was no event
last_event_date <- c(as.Date(NA), df[which(df$event==1), "date"])[last_event_index]
# substract the event''s date with the date of the last event
df$tae <- df$date - last_event_date
df
# date event tae
#1 2000-07-06 0 NA days
#2 2000-09-15 0 NA days
#3 2000-10-15 1 NA days
#4 2001-01-03 0 80 days
#5 2001-03-17 1 153 days
#6 2001-05-23 1 67 days
#7 2001-08-26 0 95 days
Pregunta antigua, pero estaba experimentando con uniones rotativas y esto me pareció interesante.
library(data.table)
setDT(df)
setkey(df, date)
# rolling self-join to attach last event time
df = df[event == 1, .(lastevent = date), key = date][df, roll = TRUE]
# find difference between record and previous event == 1 record
df[, tae := difftime(lastevent, shift(lastevent, 1L, "lag"), unit = "days")]
# difftime for simple case between date and joint on previous event
df[event == 0, tae:= difftime(date, lastevent, unit = "days")]
> df
date lastevent event tae
1: 2000-07-06 <NA> 0 NA days
2: 2000-09-15 <NA> 0 NA days
3: 2000-10-15 2000-10-15 1 NA days
4: 2001-01-03 2000-10-15 0 80 days
5: 2001-03-17 2001-03-17 1 153 days
6: 2001-05-23 2001-05-23 1 67 days
7: 2001-08-26 2001-05-23 0 95 days
tidyr::fill
tarde a la fiesta, pero usé tidyr::fill
para hacer esto más fácil. Básicamente, convierte los no eventos a valores faltantes, luego usa el fill
para completar los NA
con el último evento y luego resta la fecha actual del último evento.
He probado esto con una columna de fecha entera, por lo que podría necesitar algunos ajustes para una columna de fecha-tipo (especialmente el uso de NA_integer_
. No estoy seguro de cuál es el tipo subyacente para los objetos de Date
; supongo que NA_real_
.)
df %>%
mutate(
event = as.logical(event),
last_event = if_else(event, true = date, false = NA_integer_)) %>%
fill(last_event) %>%
mutate(event_age = date - last_event)