paso pasivos pasa medios frecuencia filtros filtro ejemplos corte circuito bajos bajo altos altas c# signal-processing matlab

c# - pasa - filtros pasivos



Filtro de paso bajo y paso alto en C# (6)

Aquí hay algunos ejemplos en código c # de un filtro butterworth y chebyshev usando el pie de pie de NMath.

Necesito filtro de paso bajo y paso alto escrito en c #. Tengo matrices dobles para este proceso de filtrado. Creo que si intento convertir los algoritmos matlab Butterworth y Chebyshev a c #, sería más fácil. Pero no pude encontrar el código de la mantequilla y los algoritmos de Chebyshev en Internet y no quiero configurar Matlab y el procesamiento de señales en mi computadora. ¿Podría proporcionar los códigos por favor? Gracias..


Aquí hay uno que tiene muchos modos, HP LP BP peak, y así sucesivamente, es un filtro estático BiQuad, quizás de 2 polos, es un filtro particular y tiene un cierto tipo de resultado digital: https://github.com/filoe/cscore/blob/master/CSCore/DSP/BiQuad.cs

/* * These implementations are based on http://www.earlevel.com/main/2011/01/02/biquad-formulas/ */ using System; namespace CSCore.DSP { /// <summary> /// Represents a biquad-filter. /// </summary> public abstract class BiQuad { /// <summary> /// The a0 value. /// </summary> protected double A0; /// <summary> /// The a1 value. /// </summary> protected double A1; /// <summary> /// The a2 value. /// </summary> protected double A2; /// <summary> /// The b1 value. /// </summary> protected double B1; /// <summary> /// The b2 value. /// </summary> protected double B2; /// <summary> /// The q value. /// </summary> private double _q; /// <summary> /// The gain value in dB. /// </summary> private double _gainDB; /// <summary> /// The z1 value. /// </summary> protected double Z1; /// <summary> /// The z2 value. /// </summary> protected double Z2; private double _frequency; /// <summary> /// Gets or sets the frequency. /// </summary> /// <exception cref="System.ArgumentOutOfRangeException">value;The samplerate has to be bigger than 2 * frequency.</exception> public double Frequency { get { return _frequency; } set { if (SampleRate < value * 2) { throw new ArgumentOutOfRangeException("value", "The samplerate has to be bigger than 2 * frequency."); } _frequency = value; CalculateBiQuadCoefficients(); } } /// <summary> /// Gets the sample rate. /// </summary> public int SampleRate { get; private set; } /// <summary> /// The q value. /// </summary> public double Q { get { return _q; } set { if (value <= 0) { throw new ArgumentOutOfRangeException("value"); } _q = value; CalculateBiQuadCoefficients(); } } /// <summary> /// Gets or sets the gain value in dB. /// </summary> public double GainDB { get { return _gainDB; } set { _gainDB = value; CalculateBiQuadCoefficients(); } } /// <summary> /// Initializes a new instance of the <see cref="BiQuad"/> class. /// </summary> /// <param name="sampleRate">The sample rate.</param> /// <param name="frequency">The frequency.</param> /// <exception cref="System.ArgumentOutOfRangeException"> /// sampleRate /// or /// frequency /// or /// q /// </exception> protected BiQuad(int sampleRate, double frequency) : this(sampleRate, frequency, 1.0 / Math.Sqrt(2)) { } /// <summary> /// Initializes a new instance of the <see cref="BiQuad"/> class. /// </summary> /// <param name="sampleRate">The sample rate.</param> /// <param name="frequency">The frequency.</param> /// <param name="q">The q.</param> /// <exception cref="System.ArgumentOutOfRangeException"> /// sampleRate /// or /// frequency /// or /// q /// </exception> protected BiQuad(int sampleRate, double frequency, double q) { if (sampleRate <= 0) throw new ArgumentOutOfRangeException("sampleRate"); if (frequency <= 0) throw new ArgumentOutOfRangeException("frequency"); if (q <= 0) throw new ArgumentOutOfRangeException("q"); SampleRate = sampleRate; Frequency = frequency; Q = q; GainDB = 6; } /// <summary> /// Processes a single <paramref name="input"/> sample and returns the result. /// </summary> /// <param name="input">The input sample to process.</param> /// <returns>The result of the processed <paramref name="input"/> sample.</returns> public float Process(float input) { double o = input * A0 + Z1; Z1 = input * A1 + Z2 - B1 * o; Z2 = input * A2 - B2 * o; return (float)o; } /// <summary> /// Processes multiple <paramref name="input"/> samples. /// </summary> /// <param name="input">The input samples to process.</param> /// <remarks>The result of the calculation gets stored within the <paramref name="input"/> array.</remarks> public void Process(float[] input) { for (int i = 0; i < input.Length; i++) { input[i] = Process(input[i]); } } /// <summary> /// Calculates all coefficients. /// </summary> protected abstract void CalculateBiQuadCoefficients(); } /// <summary> /// Used to apply a lowpass-filter to a signal. /// </summary> public class LowpassFilter : BiQuad { /// <summary> /// Initializes a new instance of the <see cref="LowpassFilter"/> class. /// </summary> /// <param name="sampleRate">The sample rate.</param> /// <param name="frequency">The filter''s corner frequency.</param> public LowpassFilter(int sampleRate, double frequency) : base(sampleRate, frequency) { } /// <summary> /// Calculates all coefficients. /// </summary> protected override void CalculateBiQuadCoefficients() { double k = Math.Tan(Math.PI * Frequency / SampleRate); var norm = 1 / (1 + k / Q + k * k); A0 = k * k * norm; A1 = 2 * A0; A2 = A0; B1 = 2 * (k * k - 1) * norm; B2 = (1 - k / Q + k * k) * norm; } } /// <summary> /// Used to apply a highpass-filter to a signal. /// </summary> public class HighpassFilter : BiQuad { private int p1; private double p2; /// <summary> /// Initializes a new instance of the <see cref="HighpassFilter"/> class. /// </summary> /// <param name="sampleRate">The sample rate.</param> /// <param name="frequency">The filter''s corner frequency.</param> public HighpassFilter(int sampleRate, double frequency) : base(sampleRate, frequency) { } /// <summary> /// Calculates all coefficients. /// </summary> protected override void CalculateBiQuadCoefficients() { double k = Math.Tan(Math.PI * Frequency / SampleRate); var norm = 1 / (1 + k / Q + k * k); A0 = 1 * norm; A1 = -2 * A0; A2 = A0; B1 = 2 * (k * k - 1) * norm; B2 = (1 - k / Q + k * k) * norm; } } /// <summary> /// Used to apply a bandpass-filter to a signal. /// </summary> public class BandpassFilter : BiQuad { /// <summary> /// Initializes a new instance of the <see cref="BandpassFilter"/> class. /// </summary> /// <param name="sampleRate">The sample rate.</param> /// <param name="frequency">The filter''s corner frequency.</param> public BandpassFilter(int sampleRate, double frequency) : base(sampleRate, frequency) { } /// <summary> /// Calculates all coefficients. /// </summary> protected override void CalculateBiQuadCoefficients() { double k = Math.Tan(Math.PI * Frequency / SampleRate); double norm = 1 / (1 + k / Q + k * k); A0 = k / Q * norm; A1 = 0; A2 = -A0; B1 = 2 * (k * k - 1) * norm; B2 = (1 - k / Q + k * k) * norm; } } /// <summary> /// Used to apply a notch-filter to a signal. /// </summary> public class NotchFilter : BiQuad { /// <summary> /// Initializes a new instance of the <see cref="NotchFilter"/> class. /// </summary> /// <param name="sampleRate">The sample rate.</param> /// <param name="frequency">The filter''s corner frequency.</param> public NotchFilter(int sampleRate, double frequency) : base(sampleRate, frequency) { } /// <summary> /// Calculates all coefficients. /// </summary> protected override void CalculateBiQuadCoefficients() { double k = Math.Tan(Math.PI * Frequency / SampleRate); double norm = 1 / (1 + k / Q + k * k); A0 = (1 + k * k) * norm; A1 = 2 * (k * k - 1) * norm; A2 = A0; B1 = A1; B2 = (1 - k / Q + k * k) * norm; } } /// <summary> /// Used to apply a lowshelf-filter to a signal. /// </summary> public class LowShelfFilter : BiQuad { /// <summary> /// Initializes a new instance of the <see cref="LowShelfFilter"/> class. /// </summary> /// <param name="sampleRate">The sample rate.</param> /// <param name="frequency">The filter''s corner frequency.</param> /// <param name="gainDB">Gain value in dB.</param> public LowShelfFilter(int sampleRate, double frequency, double gainDB) : base(sampleRate, frequency) { GainDB = gainDB; } /// <summary> /// Calculates all coefficients. /// </summary> protected override void CalculateBiQuadCoefficients() { const double sqrt2 = 1.4142135623730951; double k = Math.Tan(Math.PI * Frequency / SampleRate); double v = Math.Pow(10, Math.Abs(GainDB) / 20.0); double norm; if (GainDB >= 0) { // boost norm = 1 / (1 + sqrt2 * k + k * k); A0 = (1 + Math.Sqrt(2 * v) * k + v * k * k) * norm; A1 = 2 * (v * k * k - 1) * norm; A2 = (1 - Math.Sqrt(2 * v) * k + v * k * k) * norm; B1 = 2 * (k * k - 1) * norm; B2 = (1 - sqrt2 * k + k * k) * norm; } else { // cut norm = 1 / (1 + Math.Sqrt(2 * v) * k + v * k * k); A0 = (1 + sqrt2 * k + k * k) * norm; A1 = 2 * (k * k - 1) * norm; A2 = (1 - sqrt2 * k + k * k) * norm; B1 = 2 * (v * k * k - 1) * norm; B2 = (1 - Math.Sqrt(2 * v) * k + v * k * k) * norm; } } } /// <summary> /// Used to apply a highshelf-filter to a signal. /// </summary> public class HighShelfFilter : BiQuad { /// <summary> /// Initializes a new instance of the <see cref="HighShelfFilter"/> class. /// </summary> /// <param name="sampleRate">The sample rate.</param> /// <param name="frequency">The filter''s corner frequency.</param> /// <param name="gainDB">Gain value in dB.</param> public HighShelfFilter(int sampleRate, double frequency, double gainDB) : base(sampleRate, frequency) { GainDB = gainDB; } /// <summary> /// Calculates all coefficients. /// </summary> protected override void CalculateBiQuadCoefficients() { const double sqrt2 = 1.4142135623730951; double k = Math.Tan(Math.PI * Frequency / SampleRate); double v = Math.Pow(10, Math.Abs(GainDB) / 20.0); double norm; if (GainDB >= 0) { // boost norm = 1 / (1 + sqrt2 * k + k * k); A0 = (v + Math.Sqrt(2 * v) * k + k * k) * norm; A1 = 2 * (k * k - v) * norm; A2 = (v - Math.Sqrt(2 * v) * k + k * k) * norm; B1 = 2 * (k * k - 1) * norm; B2 = (1 - sqrt2 * k + k * k) * norm; } else { // cut norm = 1 / (v + Math.Sqrt(2 * v) * k + k * k); A0 = (1 + sqrt2 * k + k * k) * norm; A1 = 2 * (k * k - 1) * norm; A2 = (1 - sqrt2 * k + k * k) * norm; B1 = 2 * (k * k - v) * norm; B2 = (v - Math.Sqrt(2 * v) * k + k * k) * norm; } } } /// <summary> /// Used to apply an peak-filter to a signal. /// </summary> public class PeakFilter : BiQuad { /// <summary> /// Gets or sets the bandwidth. /// </summary> public double BandWidth { get { return Q; } set { if (value <= 0) throw new ArgumentOutOfRangeException("value"); Q = value; } } /// <summary> /// Initializes a new instance of the <see cref="PeakFilter"/> class. /// </summary> /// <param name="sampleRate">The sampleRate of the audio data to process.</param> /// <param name="frequency">The center frequency to adjust.</param> /// <param name="bandWidth">The bandWidth.</param> /// <param name="peakGainDB">The gain value in dB.</param> public PeakFilter(int sampleRate, double frequency, double bandWidth, double peakGainDB) : base(sampleRate, frequency, bandWidth) { GainDB = peakGainDB; } /// <summary> /// Calculates all coefficients. /// </summary> protected override void CalculateBiQuadCoefficients() { double norm; double v = Math.Pow(10, Math.Abs(GainDB) / 20.0); double k = Math.Tan(Math.PI * Frequency / SampleRate); double q = Q; if (GainDB >= 0) //boost { norm = 1 / (1 + 1 / q * k + k * k); A0 = (1 + v / q * k + k * k) * norm; A1 = 2 * (k * k - 1) * norm; A2 = (1 - v / q * k + k * k) * norm; B1 = A1; B2 = (1 - 1 / q * k + k * k) * norm; } else //cut { norm = 1 / (1 + v / q * k + k * k); A0 = (1 + 1 / q * k + k * k) * norm; A1 = 2 * (k * k - 1) * norm; A2 = (1 - 1 / q * k + k * k) * norm; B1 = A1; B2 = (1 - v / q * k + k * k) * norm; } } } }


Echa un vistazo a OpenCV / EmguCV .

Ambos son de código abierto, por lo que puede tener el "código" si eso es lo que está buscando.


Encontré esta herramienta en línea que parece prometedora: Diseño interactivo del filtro digital: Filtros Butterworth / Bessel / Chebyshev

Simplemente ingrese sus requerimientos:

  • Diseño del filtro: Butterworth / Bessel / Chebyshev
  • Tipo de filtro: Lowpass / Highpass / Bandpass / Bandstop
  • Orden del filtro
  • Frecuencia de esquina / frecuencias

Haga clic en enviar, y calcula la siguiente información:

  • Ganancias, polos, ceros
  • Relación de recurrencia
  • Código C implementando la relación de recurrencia.
  • Gráficos de magnitud, fase, impulso y respuesta a pasos.

Puede implementar un filtro en C # directamente desde la relación de recurrencia.

Si solo necesitas unos pocos filtros constantes, estás listo. Sin embargo, si necesita poder ajustar los parámetros del filtro en el tiempo de ejecución, deberá hacer más. Afortunadamente, el profesor proporcionó el código fuente de su herramienta y debería ser posible convertirlo a C #.


Puede consultar el código fuente del filtro de paso bajo de Butterworth here en otra pregunta de . Como otros señalan, EmguCV viene con una gran cantidad de filtros codificados de manera eficiente y disponible fuera de la caja


http://www.musicdsp.org/archive.php?classid=3#38

Implementé el filtro en el semicódigo de la siguiente manera en nuestro software de analizador sEMG y funciona muy bien.

public class FilterButterworth { /// <summary> /// rez amount, from sqrt(2) to ~ 0.1 /// </summary> private readonly float resonance; private readonly float frequency; private readonly int sampleRate; private readonly PassType passType; private readonly float c, a1, a2, a3, b1, b2; /// <summary> /// Array of input values, latest are in front /// </summary> private float[] inputHistory = new float[2]; /// <summary> /// Array of output values, latest are in front /// </summary> private float[] outputHistory = new float[3]; public FilterButterworth(float frequency, int sampleRate, PassType passType, float resonance) { this.resonance = resonance; this.frequency = frequency; this.sampleRate = sampleRate; this.passType = passType; switch (passType) { case PassType.Lowpass: c = 1.0f / (float)Math.Tan(Math.PI * frequency / sampleRate); a1 = 1.0f / (1.0f + resonance * c + c * c); a2 = 2f * a1; a3 = a1; b1 = 2.0f * (1.0f - c * c) * a1; b2 = (1.0f - resonance * c + c * c) * a1; break; case PassType.Highpass: c = (float)Math.Tan(Math.PI * frequency / sampleRate); a1 = 1.0f / (1.0f + resonance * c + c * c); a2 = -2f * a1; a3 = a1; b1 = 2.0f * (c * c - 1.0f) * a1; b2 = (1.0f - resonance * c + c * c) * a1; break; } } public enum PassType { Highpass, Lowpass, } public void Update(float newInput) { float newOutput = a1 * newInput + a2 * this.inputHistory[0] + a3 * this.inputHistory[1] - b1 * this.outputHistory[0] - b2 * this.outputHistory[1]; this.inputHistory[1] = this.inputHistory[0]; this.inputHistory[0] = newInput; this.outputHistory[2] = this.outputHistory[1]; this.outputHistory[1] = this.outputHistory[0]; this.outputHistory[0] = newOutput; } public float Value { get { return this.outputHistory[0]; } } }

Tenga en cuenta que este filtro se creó para fines de audio DSP. Para crear una salida limpia, debe establecer la resonancia en sqrt(2) .