python - manejo - Eliminar fila de DataFrame en Pandas basado en valor de columna
manejo de data frame python (6)
La mejor manera de hacerlo es con el enmascaramiento booleano:
In [56]: df
Out[56]:
line_date daysago line_race rating raw wrating
0 2007-03-31 62 11 56 1.000 56.000
1 2007-03-10 83 11 67 1.000 67.000
2 2007-02-10 111 9 66 1.000 66.000
3 2007-01-13 139 10 83 0.881 73.096
4 2006-12-23 160 10 88 0.793 69.787
5 2006-11-09 204 9 52 0.637 33.106
6 2006-10-22 222 8 66 0.582 38.408
7 2006-09-29 245 9 70 0.519 36.318
8 2006-09-16 258 11 68 0.486 33.063
9 2006-08-30 275 8 72 0.447 32.160
10 2006-02-11 475 5 65 0.165 10.698
11 2006-01-13 504 0 70 0.142 9.969
12 2006-01-02 515 0 64 0.135 8.627
13 2005-12-06 542 0 70 0.118 8.246
14 2005-11-29 549 0 70 0.114 7.963
15 2005-11-22 556 0 -1 0.110 -0.110
16 2005-11-01 577 0 -1 0.099 -0.099
17 2005-10-20 589 0 -1 0.093 -0.093
18 2005-09-27 612 0 -1 0.083 -0.083
19 2005-09-07 632 0 -1 0.075 -0.075
20 2005-06-12 719 0 69 0.049 3.360
21 2005-05-29 733 0 -1 0.045 -0.045
22 2005-05-02 760 0 -1 0.040 -0.040
23 2005-04-02 790 0 -1 0.034 -0.034
24 2005-03-13 810 0 -1 0.031 -0.031
25 2004-11-09 934 0 -1 0.017 -0.017
In [57]: df[df.line_race != 0]
Out[57]:
line_date daysago line_race rating raw wrating
0 2007-03-31 62 11 56 1.000 56.000
1 2007-03-10 83 11 67 1.000 67.000
2 2007-02-10 111 9 66 1.000 66.000
3 2007-01-13 139 10 83 0.881 73.096
4 2006-12-23 160 10 88 0.793 69.787
5 2006-11-09 204 9 52 0.637 33.106
6 2006-10-22 222 8 66 0.582 38.408
7 2006-09-29 245 9 70 0.519 36.318
8 2006-09-16 258 11 68 0.486 33.063
9 2006-08-30 275 8 72 0.447 32.160
10 2006-02-11 475 5 65 0.165 10.698
ACTUALIZACIÓN: Ahora que pandas 0.13 está fuera, otra forma de hacerlo es df.query(''line_race != 0'')
.
Tengo el siguiente DataFrame:
daysago line_race rating rw wrating
line_date
2007-03-31 62 11 56 1.000000 56.000000
2007-03-10 83 11 67 1.000000 67.000000
2007-02-10 111 9 66 1.000000 66.000000
2007-01-13 139 10 83 0.880678 73.096278
2006-12-23 160 10 88 0.793033 69.786942
2006-11-09 204 9 52 0.636655 33.106077
2006-10-22 222 8 66 0.581946 38.408408
2006-09-29 245 9 70 0.518825 36.317752
2006-09-16 258 11 68 0.486226 33.063381
2006-08-30 275 8 72 0.446667 32.160051
2006-02-11 475 5 65 0.164591 10.698423
2006-01-13 504 0 70 0.142409 9.968634
2006-01-02 515 0 64 0.134800 8.627219
2005-12-06 542 0 70 0.117803 8.246238
2005-11-29 549 0 70 0.113758 7.963072
2005-11-22 556 0 -1 0.109852 -0.109852
2005-11-01 577 0 -1 0.098919 -0.098919
2005-10-20 589 0 -1 0.093168 -0.093168
2005-09-27 612 0 -1 0.083063 -0.083063
2005-09-07 632 0 -1 0.075171 -0.075171
2005-06-12 719 0 69 0.048690 3.359623
2005-05-29 733 0 -1 0.045404 -0.045404
2005-05-02 760 0 -1 0.039679 -0.039679
2005-04-02 790 0 -1 0.034160 -0.034160
2005-03-13 810 0 -1 0.030915 -0.030915
2004-11-09 934 0 -1 0.016647 -0.016647
Necesito eliminar las filas donde line_race
es igual a 0
. ¿Cuál es la forma más eficiente de hacer esto?
La respuesta dada es correcta, sin embargo, como alguien de arriba dijo que puedes usar df.query(''line_race != 0'')
que dependiendo de tu problema es mucho más rápido. Altamente recomendado.
Otra forma de hacerlo. Puede que no sea la forma más eficiente, ya que el código parece un poco más complejo que el código mencionado en otras respuestas, pero es una forma alternativa de hacer lo mismo.
df = df.drop(df[df[''line_race'']==0].index)
Pero para los futuros usuarios de bypass, puede mencionar que df = df[df.line_race != 0]
no hace nada cuando intenta filtrar por None
/ valores perdidos.
Funciona:
df = df[df.line_race != 0]
No hace nada:
df = df[df.line_race != None]
Funciona:
df = df[df.line_race.notnull()]
Si estoy entendiendo correctamente, debería ser tan simple como:
df = df[df.line_race != 0]
solo para agregar otra solución, particularmente útil si está utilizando los nuevos asesores de pandas, otras soluciones reemplazarán a los pandas originales y perderán a los asesores
df.drop(df.loc[df[''line_race'']==0].index, inplace=True)