mutate - Usando spread con identificadores duplicados para filas
tidyr cheat sheet (3)
¡A tu respuesta le faltó la identificación mutada! Aquí está la solución usando solo dplyr packge.
jj %>%
gather(variable, value, -(month:student)) %>%
unite(temp, student, variable) %>%
group_by(temp) %>%
mutate(id=1:n()) %>%
spread(temp, value)
# A tibble: 6 x 6
# month id Amy_A Amy_B Bob_A Bob_B
# * <int> <int> <dbl> <dbl> <dbl> <dbl>
# 1 1 1 9 6 3 5
# 2 1 4 8 5 5 3
# 3 2 2 7 7 2 4
# 4 2 5 6 6 6 1
# 5 3 3 6 8 1 6
# 6 3 6 9 7 5 5
Tengo un marco de datos de formato largo que tiene varias entradas para la misma fecha y persona.
jj <- data.frame(month=rep(1:3,4),
student=rep(c("Amy", "Bob"), each=6),
A=c(9, 7, 6, 8, 6, 9, 3, 2, 1, 5, 6, 5),
B=c(6, 7, 8, 5, 6, 7, 5, 4, 6, 3, 1, 5))
Quiero convertirlo en formato ancho y hacerlo así:
month Amy.A Bob.A Amy.B Bob.B
1
2
3
1
2
3
1
2
3
1
2
3
Mi pregunta es muy similar a this . He usado el código dado en la respuesta:
kk <- jj %>%
gather(variable, value, -(month:student)) %>%
unite(temp, student, variable) %>%
spread(temp, value)
pero da el siguiente error:
Error: identificadores duplicados para las filas (1, 4), (2, 5), (3, 6), (13, 16), (14, 17), (15, 18), (7, 10), (8 , 11), (9, 12), (19, 22), (20, 23), (21, 24)
Gracias por adelantado. Nota: No quiero borrar varias entradas.
El problema son las dos columnas para A
y B
Si podemos hacer esa única columna de valor, podemos difundir los datos como desee. Eche un vistazo a la salida de jj_melt
cuando use el código a continuación.
library(reshape2)
jj_melt <- melt(jj, id=c("month", "student"))
jj_spread <- dcast(jj_melt, month ~ student + variable, value.var="value", fun=sum)
# month Amy_A Amy_B Bob_A Bob_B
# 1 1 17 11 8 8
# 2 2 13 13 8 5
# 3 3 15 15 6 11
No marcaré esto como un duplicado ya que la otra pregunta no se resumió por sum
, pero la respuesta de la data.table
podría ayudar con un argumento adicional, fun=sum
:
library(data.table)
dcast(setDT(jj), month ~ student, value.var=c("A", "B"), fun=sum)
# month A_sum_Amy A_sum_Bob B_sum_Amy B_sum_Bob
# 1: 1 17 8 11 8
# 2: 2 13 8 13 5
# 3: 3 15 6 15 11
Si desea utilizar la solución tidyr
, combínela con dcast
para resumir por sum
.
as.data.frame(jj)
library(tidyr)
jj %>%
gather(variable, value, -(month:student)) %>%
unite(temp, student, variable) %>%
dcast(month ~ temp, fun=sum)
# month Amy_A Amy_B Bob_A Bob_B
# 1 1 17 11 8 8
# 2 2 13 13 8 5
# 3 3 15 15 6 11
Editar
En base a sus nuevos requisitos, he agregado una columna de actividad.
library(dplyr)
jj %>% group_by(month, student) %>%
mutate(id=1:n()) %>%
melt(id=c("month", "id", "student")) %>%
dcast(... ~ student + variable, value.var="value")
# month id Amy_A Amy_B Bob_A Bob_B
# 1 1 1 9 6 3 5
# 2 1 2 8 5 5 3
# 3 2 1 7 7 2 4
# 4 2 2 6 6 6 1
# 5 3 1 6 8 1 6
# 6 3 2 9 7 5 5
Las otras soluciones también pueden ser utilizadas. Aquí agregué una expresión opcional para organizar la salida final por número de actividad:
library(tidyr)
jj %>%
gather(variable, value, -(month:student)) %>%
unite(temp, student, variable) %>%
group_by(temp) %>%
mutate(id=1:n()) %>%
dcast(... ~ temp) %>%
arrange(id)
# month id Amy_A Amy_B Bob_A Bob_B
# 1 1 1 9 6 3 5
# 2 2 2 7 7 2 4
# 3 3 3 6 8 1 6
# 4 1 4 8 5 5 3
# 5 2 5 6 6 6 1
# 6 3 6 9 7 5 5
La sintaxis data.table
es compacta porque permite múltiples columnas de value.var
y se encargará de la propagación por nosotros. Podemos omitir el proceso de melt -> cast
.
library(data.table)
setDT(jj)[, activityID := rowid(student)]
dcast(jj, ... ~ student, value.var=c("A", "B"))
# month activityID A_Amy A_Bob B_Amy B_Bob
# 1: 1 1 9 3 6 5
# 2: 1 4 8 5 5 3
# 3: 2 2 7 2 7 4
# 4: 2 5 6 6 6 1
# 5: 3 3 6 1 8 6
# 6: 3 6 9 5 7 5
gather(data, key = "key", value = "value", ..., na.rm = FALSE,
convert = FALSE, factor_key = FALSE)
Compruebe si ha invertido la clave y el valor. "Clave" es el nombre de la nueva clave y "valor" es el valor real.