c performance optimization floating-point avx512

módulo rápido AVX512 cuando el mismo divisor



performance optimization (0)

He intentado encontrar divisores con números primos factoriales potenciales (número de la forma n! + - 1) y porque compré recientemente la estación de trabajo Skylake-X, pensé que podría acelerar un poco usando las instrucciones AVX512.

El algoritmo es simple y el paso principal es tomar módulo respetuosamente en el mismo divisor. Lo principal es recorrer un amplio rango de n valores. Aquí hay un enfoque ingenuo escrito en c (P es tabla de primos):

uint64_t factorial_naive(uint64_t const nmin, uint64_t const nmax, const uint64_t *restrict P) { uint64_t n, i, residue; for (i = 0; i < APP_BUFLEN; i++){ residue = 2; for (n=3; n <= nmax; n++){ residue *= n; residue %= P[i]; // Lets check if we found factor if (nmin <= n){ if( residue == 1){ report_factor(n, -1, P[i]); } if(residue == P[i]- 1){ report_factor(n, 1, P[i]); } } } } return EXIT_SUCCESS; }

Aquí la idea es verificar un amplio rango de n, por ejemplo, 1,000,000 -> 10,000,000 con el mismo conjunto de divisores. Entonces tomaremos el modulo respect al mismo divisor varios millones de veces. el uso de DIV es muy lento, por lo que hay varios enfoques posibles según el rango de los cálculos. Aquí, en mi caso, n es muy probable que sea menor que 10 ^ 7 y el divisor potencial p es menor que 10,000 G (<10 ^ 13), ¡así que los números son menores que 64 bits y también menos de 53 bits !, pero el producto de el residuo máximo (p-1) multiplicado por n es mayor que 64 bits. Así que pensé que la versión más simple del método de Montgomery no funciona porque tomamos un módulo de un número mayor que 64 bits.

Encontré un código antiguo para Power PC donde FMA se usaba para obtener un producto preciso de hasta 106 bits (supongo) cuando se usa el doble. Así que convertí este enfoque al ensamblador AVX 512 (Intel Intrinsics). Aquí hay una versión simple del método FMA, esto se basa en el trabajo de Dekker (1971), el producto Dekker y la versión FMA de TwoProduct of that son palabras útiles cuando se trata de encontrar / buscar razones detrás de esto. También este enfoque ha sido discutido en este foro (por ejemplo, here ).

int64_t factorial_FMA(uint64_t const nmin, uint64_t const nmax, const uint64_t *restrict P) { uint64_t n, i; double prime_double, prime_double_reciprocal, quotient, residue; double nr, n_double, prime_times_quotient_high, prime_times_quotient_low; for (i = 0; i < APP_BUFLEN; i++){ residue = 2.0; prime_double = (double)P[i]; prime_double_reciprocal = 1.0 / prime_double; n_double = 3.0; for (n=3; n <= nmax; n++){ nr = n_double * residue; quotient = fma(nr, prime_double_reciprocal, rounding_constant); quotient -= rounding_constant; prime_times_quotient_high= prime_double * quotient; prime_times_quotient_low = fma(prime_double, quotient, -prime_times_quotient_high); residue = fma(residue, n, -prime_times_quotient_high) - prime_times_quotient_low; if (residue < 0.0) residue += prime_double; n_double += 1.0; // Lets check if we found factor if (nmin <= n){ if( residue == 1.0){ report_factor(n, -1, P[i]); } if(residue == prime_double - 1.0){ report_factor(n, 1, P[i]); } } } } return EXIT_SUCCESS; }

Aquí he usado constante magia

static const double rounding_constant = 6755399441055744.0;

eso es 2 ^ 51 + 2 ^ 52 número mágico para dobles.

Convertí esto en AVX512 (32 divisores potenciales por ciclo) y analicé el resultado usando IACA. Dijo que la asignación de Throughput Bottleneck: Backend y Backend estaba estancada debido a recursos de asignación no disponibles. No tengo mucha experiencia con el ensamblador, así que mi pregunta es si hay algo que pueda hacer para acelerar esto y resolver este cuello de botella de back-end.

El código AVX512 está aquí y se puede encontrar también desde github

uint64_t factorial_AVX512_unrolled_four(uint64_t const nmin, uint64_t const nmax, const uint64_t *restrict P) { // we are trying to find a factor for a factorial numbers : n! +-1 //nmin is minimum n we want to report and nmax is maximum. P is table of primes // we process 32 primes in one loop. // naive version of the algorithm is int he function factorial_naive // and simple version of the FMA based approach in the function factorial_simpleFMA const double one_table[8] __attribute__ ((aligned(64))) ={1.0, 1.0, 1.0,1.0,1.0,1.0,1.0,1.0}; uint64_t n; __m512d zero, rounding_const, one, n_double; __m512i prime1, prime2, prime3, prime4; __m512d residue1, residue2, residue3, residue4; __m512d prime_double_reciprocal1, prime_double_reciprocal2, prime_double_reciprocal3, prime_double_reciprocal4; __m512d quotient1, quotient2, quotient3, quotient4; __m512d prime_times_quotient_high1, prime_times_quotient_high2, prime_times_quotient_high3, prime_times_quotient_high4; __m512d prime_times_quotient_low1, prime_times_quotient_low2, prime_times_quotient_low3, prime_times_quotient_low4; __m512d nr1, nr2, nr3, nr4; __m512d prime_double1, prime_double2, prime_double3, prime_double4; __m512d prime_minus_one1, prime_minus_one2, prime_minus_one3, prime_minus_one4; __mmask8 negative_reminder_mask1, negative_reminder_mask2, negative_reminder_mask3, negative_reminder_mask4; __mmask8 found_factor_mask11, found_factor_mask12, found_factor_mask13, found_factor_mask14; __mmask8 found_factor_mask21, found_factor_mask22, found_factor_mask23, found_factor_mask24; // load data and initialize cariables for loop rounding_const = _mm512_set1_pd(rounding_constant); one = _mm512_load_pd(one_table); zero = _mm512_setzero_pd (); // load primes used to sieve prime1 = _mm512_load_epi64((__m512i *) &P[0]); prime2 = _mm512_load_epi64((__m512i *) &P[8]); prime3 = _mm512_load_epi64((__m512i *) &P[16]); prime4 = _mm512_load_epi64((__m512i *) &P[24]); // convert primes to double prime_double1 = _mm512_cvtepi64_pd (prime1); // vcvtqq2pd prime_double2 = _mm512_cvtepi64_pd (prime2); // vcvtqq2pd prime_double3 = _mm512_cvtepi64_pd (prime3); // vcvtqq2pd prime_double4 = _mm512_cvtepi64_pd (prime4); // vcvtqq2pd // calculates 1.0/ prime prime_double_reciprocal1 = _mm512_div_pd(one, prime_double1); prime_double_reciprocal2 = _mm512_div_pd(one, prime_double2); prime_double_reciprocal3 = _mm512_div_pd(one, prime_double3); prime_double_reciprocal4 = _mm512_div_pd(one, prime_double4); // for comparison if we have found factors for n!+1 prime_minus_one1 = _mm512_sub_pd(prime_double1, one); prime_minus_one2 = _mm512_sub_pd(prime_double2, one); prime_minus_one3 = _mm512_sub_pd(prime_double3, one); prime_minus_one4 = _mm512_sub_pd(prime_double4, one); // residue init residue1 = _mm512_set1_pd(2.0); residue2 = _mm512_set1_pd(2.0); residue3 = _mm512_set1_pd(2.0); residue4 = _mm512_set1_pd(2.0); // double counter init n_double = _mm512_set1_pd(3.0); // main loop starts here. typical value for nmax can be 5,000,000 -> 10,000,000 for (n=3; n<=nmax; n++) // main loop { // timings for instructions: // _mm512_load_epi64 = vmovdqa64 : L 1, T 0.5 // _mm512_load_pd = vmovapd : L 1, T 0.5 // _mm512_set1_pd // _mm512_div_pd = vdivpd : L 23, T 16 // _mm512_cvtepi64_pd = vcvtqq2pd : L 4, T 0,5 // _mm512_mul_pd = vmulpd : L 4, T 0.5 // _mm512_fmadd_pd = vfmadd132pd, vfmadd213pd, vfmadd231pd : L 4, T 0.5 // _mm512_fmsub_pd = vfmsub132pd, vfmsub213pd, vfmsub231pd : L 4, T 0.5 // _mm512_sub_pd = vsubpd : L 4, T 0.5 // _mm512_cmplt_pd_mask = vcmppd : L ?, Y 1 // _mm512_mask_add_pd = vaddpd : L 4, T 0.5 // _mm512_cmpeq_pd_mask = vcmppd L ?, Y 1 // _mm512_kor = korw L 1, T 1 // nr = residue * n nr1 = _mm512_mul_pd (residue1, n_double); nr2 = _mm512_mul_pd (residue2, n_double); nr3 = _mm512_mul_pd (residue3, n_double); nr4 = _mm512_mul_pd (residue4, n_double); // quotient = nr * 1.0/ prime_double + rounding_constant quotient1 = _mm512_fmadd_pd(nr1, prime_double_reciprocal1, rounding_const); quotient2 = _mm512_fmadd_pd(nr2, prime_double_reciprocal2, rounding_const); quotient3 = _mm512_fmadd_pd(nr3, prime_double_reciprocal3, rounding_const); quotient4 = _mm512_fmadd_pd(nr4, prime_double_reciprocal4, rounding_const); // quotient -= rounding_constant, now quotient is rounded to integer // countient should be at maximum nmax (10,000,000) quotient1 = _mm512_sub_pd(quotient1, rounding_const); quotient2 = _mm512_sub_pd(quotient2, rounding_const); quotient3 = _mm512_sub_pd(quotient3, rounding_const); quotient4 = _mm512_sub_pd(quotient4, rounding_const); // now we calculate high and low for prime * quotient using decker product (FMA). // quotient is calculated using approximation but this is accurate for given quotient prime_times_quotient_high1 = _mm512_mul_pd(quotient1, prime_double1); prime_times_quotient_high2 = _mm512_mul_pd(quotient2, prime_double2); prime_times_quotient_high3 = _mm512_mul_pd(quotient3, prime_double3); prime_times_quotient_high4 = _mm512_mul_pd(quotient4, prime_double4); prime_times_quotient_low1 = _mm512_fmsub_pd(quotient1, prime_double1, prime_times_quotient_high1); prime_times_quotient_low2 = _mm512_fmsub_pd(quotient2, prime_double2, prime_times_quotient_high2); prime_times_quotient_low3 = _mm512_fmsub_pd(quotient3, prime_double3, prime_times_quotient_high3); prime_times_quotient_low4 = _mm512_fmsub_pd(quotient4, prime_double4, prime_times_quotient_high4); // now we calculate new reminder using decker product and using original values // we subtract above calculated prime * quotient (quotient is aproximation) residue1 = _mm512_fmsub_pd(residue1, n_double, prime_times_quotient_high1); residue2 = _mm512_fmsub_pd(residue2, n_double, prime_times_quotient_high2); residue3 = _mm512_fmsub_pd(residue3, n_double, prime_times_quotient_high3); residue4 = _mm512_fmsub_pd(residue4, n_double, prime_times_quotient_high4); residue1 = _mm512_sub_pd(residue1, prime_times_quotient_low1); residue2 = _mm512_sub_pd(residue2, prime_times_quotient_low2); residue3 = _mm512_sub_pd(residue3, prime_times_quotient_low3); residue4 = _mm512_sub_pd(residue4, prime_times_quotient_low4); // lets check if reminder < 0 negative_reminder_mask1 = _mm512_cmplt_pd_mask(residue1,zero); negative_reminder_mask2 = _mm512_cmplt_pd_mask(residue2,zero); negative_reminder_mask3 = _mm512_cmplt_pd_mask(residue3,zero); negative_reminder_mask4 = _mm512_cmplt_pd_mask(residue4,zero); // we and prime back to reminder using mask if it was < 0 residue1 = _mm512_mask_add_pd(residue1, negative_reminder_mask1, residue1, prime_double1); residue2 = _mm512_mask_add_pd(residue2, negative_reminder_mask2, residue2, prime_double2); residue3 = _mm512_mask_add_pd(residue3, negative_reminder_mask3, residue3, prime_double3); residue4 = _mm512_mask_add_pd(residue4, negative_reminder_mask4, residue4, prime_double4); n_double = _mm512_add_pd(n_double,one); // if we are below nmin then we continue next iteration if (n < nmin) continue; // Lets check if we found any factors, residue 1 == n!-1 found_factor_mask11 = _mm512_cmpeq_pd_mask(one, residue1); found_factor_mask12 = _mm512_cmpeq_pd_mask(one, residue2); found_factor_mask13 = _mm512_cmpeq_pd_mask(one, residue3); found_factor_mask14 = _mm512_cmpeq_pd_mask(one, residue4); // residue prime -1 == n!+1 found_factor_mask21 = _mm512_cmpeq_pd_mask(prime_minus_one1, residue1); found_factor_mask22 = _mm512_cmpeq_pd_mask(prime_minus_one2, residue2); found_factor_mask23 = _mm512_cmpeq_pd_mask(prime_minus_one3, residue3); found_factor_mask24 = _mm512_cmpeq_pd_mask(prime_minus_one4, residue4); if (found_factor_mask12 | found_factor_mask11 | found_factor_mask13 | found_factor_mask14 | found_factor_mask21 | found_factor_mask22 | found_factor_mask23|found_factor_mask24) { // we find factor very rarely double *residual_list1 = (double *) &residue1; double *residual_list2 = (double *) &residue2; double *residual_list3 = (double *) &residue3; double *residual_list4 = (double *) &residue4; double *prime_list1 = (double *) &prime_double1; double *prime_list2 = (double *) &prime_double2; double *prime_list3 = (double *) &prime_double3; double *prime_list4 = (double *) &prime_double4; for (int i=0; i <8; i++){ if( residual_list1[i] == 1.0) { report_factor((uint64_t) n, -1, (uint64_t) prime_list1[i]); } if( residual_list2[i] == 1.0) { report_factor((uint64_t) n, -1, (uint64_t) prime_list2[i]); } if( residual_list3[i] == 1.0) { report_factor((uint64_t) n, -1, (uint64_t) prime_list3[i]); } if( residual_list4[i] == 1.0) { report_factor((uint64_t) n, -1, (uint64_t) prime_list4[i]); } if(residual_list1[i] == (prime_list1[i] - 1.0)) { report_factor((uint64_t) n, 1, (uint64_t) prime_list1[i]); } if(residual_list2[i] == (prime_list2[i] - 1.0)) { report_factor((uint64_t) n, 1, (uint64_t) prime_list2[i]); } if(residual_list3[i] == (prime_list3[i] - 1.0)) { report_factor((uint64_t) n, 1, (uint64_t) prime_list3[i]); } if(residual_list4[i] == (prime_list4[i] - 1.0)) { report_factor((uint64_t) n, 1, (uint64_t) prime_list4[i]); } } } } return EXIT_SUCCESS; }