c++ - make_tuple - Eliminando el primer tipo de un std:: tuple
tuple c++ example (4)
Escribí una proposal que fue aceptada en el estándar C ++ 14, lo que lo hace bastante fácil de hacer para cualquier tipo "tipo tupla", es decir, una que admita la API tuple_size
y tuple_element
:
template<typename T, typename Seq>
struct tuple_cdr_impl;
template<typename T, std::size_t I0, std::size_t... I>
struct tuple_cdr_impl<T, std::index_sequence<I0, I...>>
{
using type = std::tuple<typename std::tuple_element<I, T>::type...>;
};
template<typename T>
struct tuple_cdr
: tuple_cdr_impl<T, std::make_index_sequence<std::tuple_size<T>::value>>
{ };
Y puede transformar un objeto de tupla en el nuevo tipo con solo un par de funciones:
template<typename T, std::size_t I0, std::size_t... I>
typename tuple_cdr<typename std::remove_reference<T>::type>::type
cdr_impl(T&& t, std::index_sequence<I0, I...>)
{
return std::make_tuple(std::get<I>(t)...);
}
template<typename T>
typename tuple_cdr<typename std::remove_reference<T>::type>::type
cdr(T&& t)
{
return cdr_impl(std::forward<T>(t),
std::make_index_sequence<std::tuple_size<T>::value>{});
}
Esto crea una secuencia entera [0,1,2,...,N)
donde N
es tuple_size<T>::value
, luego crea una nueva tupla con make_tuple(get<I>(t)...)
para I
en [1,2,...,N)
Probandolo
using tuple1 = std::tuple<int, short, double>;
using tuple2 = std::tuple<short, double>;
using transformed = decltype(cdr(std::declval<tuple1>()));
static_assert(std::is_same<transformed, tuple2>::value, "");
static_assert(std::is_same<tuple_cdr<tuple1>::type, tuple2>::value, "");
#include <iostream>
int main()
{
auto t = cdr(std::make_tuple(nullptr, "hello", "world"));
std::cout << std::get<0>(t) << ", " << std::get<1>(t) << ''/n'';
}
Mi implementación de referencia para la propuesta se encuentra en https://gitlab.com/redistd/integer_seq/blob/master/integer_seq.h
Esto parece ser una pregunta muy simple: ¿Cómo se quita el primer tipo (el n-th) en un std::tuple
?
Ejemplo:
typedef std::tuple<int, short, double> tuple1;
typedef std::tuple<short, double> tuple2;
La operación descrita anteriormente transformaría tuple1
en tuple2
. ¿Es posible?
Este es un bit sobre diseñado de metaprogramación de template
para esta tarea. Incluye la capacidad de realizar pedidos / duplicaciones / eliminaciones arbitrarias en los tipos de una tuple
través de una template
filtro:
#include <utility>
#include <type_traits>
template<typename... Ts> struct pack {};
template<std::size_t index, typename Pack, typename=void> struct nth_type;
template<typename T0, typename... Ts>
struct nth_type<0, pack<T0, Ts...>, void> { typedef T0 type; };
template<std::size_t index, typename T0, typename... Ts>
struct nth_type<index, pack<T0, Ts...>, typename std::enable_if<(index>0)>::type>:
nth_type<index-1, pack<Ts...>>
{};
template<std::size_t... s> struct seq {};
template<std::size_t n, std::size_t... s>
struct make_seq:make_seq<n-1, n-1, s...> {};
template<std::size_t... s>
struct make_seq<0,s...> {
typedef seq<s...> type;
};
template<typename T, typename Pack> struct conc_pack { typedef pack<T> type; };
template<typename T, typename... Ts> struct conc_pack<T, pack<Ts...>> { typedef pack<T, Ts...> type; };
template<std::size_t n, typename Seq> struct append;
template<std::size_t n, std::size_t... s>
struct append<n, seq<s...>> {
typedef seq<n, s...> type;
};
template<typename S0, typename S1> struct conc;
template<std::size_t... s0, std::size_t... s1>
struct conc<seq<s0...>, seq<s1...>>
{
typedef seq<s0..., s1...> type;
};
template<typename T, typename=void> struct value_exists:std::false_type {};
template<typename T> struct value_exists<T,
typename std::enable_if< std::is_same<decltype(T::value),decltype(T::value)>::value >::type
>:std::true_type {};
template<typename T, typename=void> struct result_exists:std::false_type {};
template<typename T> struct result_exists<T,
typename std::enable_if< std::is_same<typename T::result,typename T::result>::value >::type
>:std::true_type {};
template<template<std::size_t>class filter, typename Seq, typename=void>
struct filter_seq { typedef seq<> type; };
template<template<std::size_t>class filter, std::size_t s0, std::size_t... s>
struct filter_seq<filter, seq<s0, s...>, typename std::enable_if<value_exists<filter<s0>>::value>::type>
: append< filter<s0>::value, typename filter_seq<filter, seq<s...>>::type >
{};
template<template<std::size_t>class filter, std::size_t s0, std::size_t... s>
struct filter_seq<filter, seq<s0, s...>, typename std::enable_if<!value_exists<filter<s0>>::value && result_exists<filter<s0>>::value>::type>
: conc< typename filter<s0>::result, typename filter_seq<filter, seq<s...>>::type >
{};
template<template<std::size_t>class filter, std::size_t s0, std::size_t... s>
struct filter_seq<filter, seq<s0, s...>, typename std::enable_if<!value_exists<filter<s0>>::value && !result_exists<filter<s0>>::value>::type>
: filter_seq<filter, seq<s...>>
{};
template<typename Seq, typename Pack>
struct remap_pack {
typedef pack<> type;
};
template<std::size_t s0, std::size_t... s, typename Pack>
struct remap_pack< seq<s0, s...>, Pack >
{
typedef typename conc_pack< typename nth_type<s0, Pack>::type, typename remap_pack< seq<s...>, Pack >::type >::type type;
};
template<typename Pack>
struct get_indexes { typedef seq<> type; };
template<typename... Ts>
struct get_indexes<pack<Ts...>> {
typedef typename make_seq< sizeof...(Ts) >::type type;
};
template<std::size_t n>
struct filter_zero_out { enum{ value = n }; };
template<>
struct filter_zero_out<0> {};
template<std::size_t n>
struct filter_zero_out_b { typedef seq<n> result; };
template<>
struct filter_zero_out_b<0> { typedef seq<> result; };
#include <iostream>
int main() {
typedef pack< int, double, char > pack1;
typedef pack< double, char > pack2;
typedef filter_seq< filter_zero_out, typename get_indexes<pack1>::type >::type reindex;
typedef filter_seq< filter_zero_out_b, typename get_indexes<pack1>::type >::type reindex_b;
typedef typename remap_pack< reindex, pack1 >::type pack2_clone;
typedef typename remap_pack< reindex_b, pack1 >::type pack2_clone_b;
std::cout << std::is_same< pack2, pack2_clone >::value << "/n";
std::cout << std::is_same< pack2, pack2_clone_b >::value << "/n";
}
Aquí tenemos un pack
tipos que contiene una lista arbitraria de tipos. Vea la respuesta ordenada de @LucTouraille para saber cómo moverse entre la tuple
y el pack
.
seq
tiene una secuencia de índices. remap_pack
toma un seq
y un pack
, y construye un pack
resultante agarrando el elemento nth del pack
original.
filter_seq
toma un functor template<size_t>
functor y un seq
, y usa el functor para filtrar los elementos del seq
. El functor puede devolver un ::value
de tipo size_t
o un ::result
de tipo seq<...>
o ninguno de los dos, lo que permite los functors uno a uno o uno a varios.
Algunas otras funciones de ayuda, como conc
, append
, conc_pack
, get_indexes
, make_seq
, nth_type
redondean las cosas.
Lo probé con filter_zero_out
que es un ::value
filtro basado en ::value
que elimina 0, y filter_zero_out_b
que es un ::result
filtro basado en ::result
que también elimina 0.
Puede usar una función de tipo simple basada en la especialización parcial de una plantilla de clase:
#include <type_traits>
#include <tuple>
using namespace std;
template<typename T>
struct remove_first_type
{
};
template<typename T, typename... Ts>
struct remove_first_type<tuple<T, Ts...>>
{
typedef tuple<Ts...> type;
};
int main()
{
typedef tuple<int, bool, double> my_tuple;
typedef remove_first_type<my_tuple>::type my_tuple_wo_first_type;
static_assert(
is_same<my_tuple_wo_first_type, tuple<bool, double>>::value,
"Error!"
);
}
Además, esta solución se puede generalizar fácilmente para eliminar el tipo i-th de una tupla:
#include <type_traits>
#include <tuple>
using namespace std;
template<size_t I, typename T>
struct remove_ith_type
{
};
template<typename T, typename... Ts>
struct remove_ith_type<0, tuple<T, Ts...>>
{
typedef tuple<Ts...> type;
};
template<size_t I, typename T, typename... Ts>
struct remove_ith_type<I, tuple<T, Ts...>>
{
typedef decltype(
tuple_cat(
declval<tuple<T>>(),
declval<typename remove_ith_type<I - 1, tuple<Ts...>>::type>()
)
) type;
};
int main()
{
typedef tuple<int, bool, double> my_tuple;
typedef remove_ith_type<1, my_tuple>::type my_tuple_wo_2nd_type;
static_assert(
is_same<my_tuple_wo_2nd_type, tuple<int, double>>::value,
"Error!"
);
}
Se me ocurrió una solución muy similar a la propuesta por @Andy, pero eso intenta ser un poco más genérico trabajando directamente en el paquete de parámetros (usando un envoltorio ficticio) en lugar de en std::tuple
. De esta manera, la operación también se puede aplicar a otras plantillas variadic, no solo a tuplas:
#include <type_traits>
#include <tuple>
template <typename... Args> struct pack {};
template <template <typename...> class T, typename Pack>
struct unpack;
template <template <typename...> class T, typename... Args>
struct unpack<T, pack<Args...>>
{
typedef T<Args...> type;
};
template <typename T, typename Pack>
struct prepend;
template <typename T, typename... Args>
struct prepend<T, pack<Args...>>
{
typedef pack<T, Args...> type;
};
template <std::size_t N, typename... Args>
struct remove_nth_type;
template <std::size_t N, typename T, typename... Ts>
struct remove_nth_type<N, T, Ts...>
: prepend<T, typename remove_nth_type<N-1, Ts...>::type>
{};
template <typename T, typename... Ts>
struct remove_nth_type<0, T, Ts...>
{
typedef pack<Ts...> type;
};
template <typename T, int N>
struct remove_nth;
template <template <typename...> class T, int N, typename... Args>
struct remove_nth<T<Args...>, N>
{
typedef typename
unpack<
T, typename
remove_nth_type<N, Args...>::type
>::type type;
};
template <typename... Args>
struct my_variadic_template
{
};
int main()
{
typedef std::tuple<int, bool, double> my_tuple;
typedef remove_nth<my_tuple, 1>::type my_tuple_wo_2nd_type;
static_assert(
is_same<my_tuple_wo_2nd_type, tuple<int, double>>::value,
"Error!"
);
typedef my_variadic_template<int, double> vt;
typedef remove_nth<vt, 0>::type vt_wo_1st_type;
static_assert(
is_same<vt_wo_1st_type, my_variadic_template<double>>::value,
"Error!"
);
}
pack
es una estructura auxiliar cuyo único propósito es almacenar un paquete de parámetros de plantilla. unpack
se puede usar para descomprimir los parámetros en una plantilla de clase arbitraria ( gracias a @BenVoigt por este truco ). anteponer simplemente antepone un tipo a un paquete.
remove_nth_type
utiliza la especialización de plantilla parcial para eliminar el enésimo tipo de un paquete de parámetros, almacenando el resultado en un pack
. Finalmente, remove_nth
toma una especialización de una plantilla de clase arbitraria, elimina el enésimo tipo de sus parámetros de plantilla y devuelve la nueva especialización.