python - optimal - Scipy curvefit RuntimeError: parámetros óptimos no encontrados: el número de llamadas a la función ha alcanzado maxfev=1000
fit() python (2)
Después de corregir sus declaraciones de importación:
#import matplotlib as mpl
import matplotlib.pyplot as plt
su código produjo el siguiente error:
RuntimeWarning: divide by zero encountered in log
cambiando:
#t=np.linspace(0,3600*24*28,13)
t=np.linspace(1,3600*24*28,13)
produjo el siguiente resultado:
Quiero hacer un ajuste logharitmico. Pero sigo recibiendo el error de tiempo de ejecución:
Parámetros óptimos no encontrados: el número de llamadas a la función ha alcanzado maxfev = 1000
Yo uso la siguiente secuencia de comandos. ¿Alguien puede decirme dónde me equivoco? Yo uso Spyder y todavía soy un principiante.
import math
import matplotlib as mpl
from scipy.optimize import curve_fit
import numpy as np
#data
F1=[735.0,696.0,690.0,683.0,680.0,678.0,679.0,675.0,671.0,669.0,668.0,664.0,664.0]
t1=[1,90000.0,178200.0,421200.0,505800.0,592200.0,768600.0,1036800.0,1371600.0,1630800.0,1715400.0,2345400.0,2409012.0]
F1n=np.array(F1)
t1n=np.array(t1)
plt.plot(t1,F1,''ro'',label="original data")
# curvefit
def func(t,a,b):
return a+b*np.log(t)
t=np.linspace(0,3600*24*28,13)
popt, pcov = curve_fit(func, t, F1n, maxfev=1000)
plt.plot(t, func(t, *popt), label="Fitted Curve")
plt.legend(loc=''upper left'')
plt.show()
Sus datos originales son t1
y F1
. Por curve_fit
tanto, a curve_fit
se le debe dar t1
como su segundo argumento, no t
.
popt, pcov = curve_fit(func, t1, F1, maxfev=1000)
Ahora, una vez que obtenga los parámetros ajustados, popt
, puede evaluar func
en los puntos en t
para obtener una curva ajustada:
t = np.linspace(1, 3600 * 24 * 28, 13)
plt.plot(t, func(t, *popt), label="Fitted Curve")
(Eliminé cero de t
(según la respuesta de StuGrey) para evitar la Warning: divide by zero encountered in log
).
import matplotlib.pyplot as plt
import scipy.optimize as optimize
import numpy as np
# data
F1 = np.array([
735.0, 696.0, 690.0, 683.0, 680.0, 678.0, 679.0, 675.0, 671.0, 669.0, 668.0,
664.0, 664.0])
t1 = np.array([
1, 90000.0, 178200.0, 421200.0, 505800.0, 592200.0, 768600.0, 1036800.0,
1371600.0, 1630800.0, 1715400.0, 2345400.0, 2409012.0])
plt.plot(t1, F1, ''ro'', label="original data")
# curvefit
def func(t, a, b):
return a + b * np.log(t)
popt, pcov = optimize.curve_fit(func, t1, F1, maxfev=1000)
t = np.linspace(1, 3600 * 24 * 28, 13)
plt.plot(t, func(t, *popt), label="Fitted Curve")
plt.legend(loc=''upper left'')
plt.show()