language agnostic - vale - El producto más grande de cinco dígitos consecutivos en un número de 1000 dígitos
quien descubrio el numero pi (9)
Cinco dígitos únicos. 1, 5, 8 ... lo que aparezca en el número grande, todo en una fila. Por lo tanto, si un fragmento lee "... 47946285 ..." Entonces podría usar "47946", "79462", "94628", "46285", etc.
Estoy trabajando en los problemas del proyecto Euler y no estoy muy seguro de que mi comprensión de la pregunta sea correcta.
El problema 8 es el siguiente:
Encuentre el mayor producto de cinco dígitos consecutivos en el número de 1000 dígitos.
He tomado esto para significar lo siguiente:
Necesito encontrar cinco números que se ejecuten consecutivamente en el número de 1000 dígitos y luego sumarlos para obtener el total. Supongo que el tamaño de los números podría ser cualquier cosa, es decir, 1,2,3 o 12,13,14 o 123,124,124 o 1234,1235,1236, etc.
¿Mi comprensión de esto es correcta o he malinterpretado la pregunta?
Nota: Por favor, no suministre el código ni la solución que necesito resolver yo mismo.
El numero es:
73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 7163626956188267042825248360082 3257530420752963450
- Los primeros cinco dígitos consecutivos son: 73167. Su producto es 7 * 3 * 1 * 6 * 7 = 882
- Los siguientes cinco dígitos consecutivos son: 31671. Su producto es 3 * 1 * 6 * 7 * 1 = 126
- Los siguientes cinco dígitos consecutivos son: 16717. Su producto es 1 * 6 * 7 * 1 * 7 = 294
Y así. Tenga en cuenta la superposición. Ahora, encuentre los cinco dígitos consecutivos cuyo producto es máximo sobre el número completo de 1000 dígitos.
Esta es mi solución personal, usando un poco de la fuerza brutal:
Module Module1
Sub Main()
Dim v() As Integer = {7, 3, 1, 6, 7, 1, 7, 6, 5, 3, 1, 3, 3, 0, 6, 2, 4, 9, 1, 9, 2, 2, 5, 1, 1, 9, 6, 7, 4, 4, 2, 6, 5, 7, 4, 7, 4, 2, 3, 5, 5, 3, 4, 9, 1, 9, 4, 9, 3, 4, 9, 6, 9, 8, 3, 5, 2, 0, 3, 1, 2, 7, 7, 4, 5, 0, 6, 3, 2, 6, 2, 3, 9, 5, 7, 8, 3, 1, 8, 0, 1, 6, 9, 8, 4, 8, 0, 1, 8, 6, 9, 4, 7, 8, 8, 5, 1, 8, 4, 3, 8, 5, 8, 6, 1, 5, 6, 0, 7, 8, 9, 1, 1, 2, 9, 4, 9, 4, 9, 5, 4, 5, 9, 5, 0, 1, 7, 3, 7, 9, 5, 8, 3, 3, 1, 9, 5, 2, 8, 5, 3, 2, 0, 8, 8, 0, 5, 5, 1, 1, 1, 2, 5, 4, 0, 6, 9, 8, 7, 4, 7, 1, 5, 8, 5, 2, 3, 8, 6, 3, 0, 5, 0, 7, 1, 5, 6, 9, 3, 2, 9, 0, 9, 6, 3, 2, 9, 5, 2, 2, 7, 4, 4, 3, 0, 4, 3, 5, 5, 7, 6, 6, 8, 9, 6, 6, 4, 8, 9, 5, 0, 4, 4, 5, 2, 4, 4, 5, 2, 3, 1, 6, 1, 7, 3, 1, 8, 5, 6, 4, 0, 3, 0, 9, 8, 7, 1, 1, 1, 2, 1, 7, 2, 2, 3, 8, 3, 1, 1, 3, 6, 2, 2, 2, 9, 8, 9, 3, 4, 2, 3, 3, 8, 0, 3, 0, 8, 1, 3, 5, 3, 3, 6, 2, 7, 6, 6, 1, 4, 2, 8, 2, 8, 0, 6, 4, 4, 4, 4, 8, 6, 6, 4, 5, 2, 3, 8, 7, 4, 9, 3, 0, 3, 5, 8, 9, 0, 7, 2, 9, 6, 2, 9, 0, 4, 9, 1, 5, 6, 0, 4, 4, 0, 7, 7, 2, 3, 9, 0, 7, 1, 3, 8, 1, 0, 5, 1, 5, 8, 5, 9, 3, 0, 7, 9, 6, 0, 8, 6, 6, 7, 0, 1, 7, 2, 4, 2, 7, 1, 2, 1, 8, 8, 3, 9, 9, 8, 7, 9, 7, 9, 0, 8, 7, 9, 2, 2, 7, 4, 9, 2, 1, 9, 0, 1, 6, 9, 9, 7, 2, 0, 8, 8, 8, 0, 9, 3, 7, 7, 6, 6, 5, 7, 2, 7, 3, 3, 3, 0, 0, 1, 0, 5, 3, 3, 6, 7, 8, 8, 1, 2, 2, 0, 2, 3, 5, 4, 2, 1, 8, 0, 9, 7, 5, 1, 2, 5, 4, 5, 4, 0, 5, 9, 4, 7, 5, 2, 2, 4, 3, 5, 2, 5, 8, 4, 9, 0, 7, 7, 1, 1, 6, 7, 0, 5, 5, 6, 0, 1, 3, 6, 0, 4, 8, 3, 9, 5, 8, 6, 4, 4, 6, 7, 0, 6, 3, 2, 4, 4, 1, 5, 7, 2, 2, 1, 5, 5, 3, 9, 7, 5, 3, 6, 9, 7, 8, 1, 7, 9, 7, 7, 8, 4, 6, 1, 7, 4, 0, 6, 4, 9, 5, 5, 1, 4, 9, 2, 9, 0, 8, 6, 2, 5, 6, 9, 3, 2, 1, 9, 7, 8, 4, 6, 8, 6, 2, 2, 4, 8, 2, 8, 3, 9, 7, 2, 2, 4, 1, 3, 7, 5, 6, 5, 7, 0, 5, 6, 0, 5, 7, 4, 9, 0, 2, 6, 1, 4, 0, 7, 9, 7, 2, 9, 6, 8, 6, 5, 2, 4, 1, 4, 5, 3, 5, 1, 0, 0, 4, 7, 4, 8, 2, 1, 6, 6, 3, 7, 0, 4, 8, 4, 4, 0, 3, 1, 9, 9, 8, 9, 0, 0, 0, 8, 8, 9, 5, 2, 4, 3, 4, 5, 0, 6, 5, 8, 5, 4, 1, 2, 2, 7, 5, 8, 8, 6, 6, 6, 8, 8, 1, 1, 6, 4, 2, 7, 1, 7, 1, 4, 7, 9, 9, 2, 4, 4, 4, 2, 9, 2, 8, 2, 3, 0, 8, 6, 3, 4, 6, 5, 6, 7, 4, 8, 1, 3, 9, 1, 9, 1, 2, 3, 1, 6, 2, 8, 2, 4, 5, 8, 6, 1, 7, 8, 6, 6, 4, 5, 8, 3, 5, 9, 1, 2, 4, 5, 6, 6, 5, 2, 9, 4, 7, 6, 5, 4, 5, 6, 8, 2, 8, 4, 8, 9, 1, 2, 8, 8, 3, 1, 4, 2, 6, 0, 7, 6, 9, 0, 0, 4, 2, 2, 4, 2, 1, 9, 0, 2, 2, 6, 7, 1, 0, 5, 5, 6, 2, 6, 3, 2, 1, 1, 1, 1, 1, 0, 9, 3, 7, 0, 5, 4, 4, 2, 1, 7, 5, 0, 6, 9, 4, 1, 6, 5, 8, 9, 6, 0, 4, 0, 8, 0, 7, 1, 9, 8, 4, 0, 3, 8, 5, 0, 9, 6, 2, 4, 5, 5, 4, 4, 4, 3, 6, 2, 9, 8, 1, 2, 3, 0, 9, 8, 7, 8, 7, 9, 9, 2, 7, 2, 4, 4, 2, 8, 4, 9, 0, 9, 1, 8, 8, 8, 4, 5, 8, 0, 1, 5, 6, 1, 6, 6, 0, 9, 7, 9, 1, 9, 1, 3, 3, 8, 7, 5, 4, 9, 9, 2, 0, 0, 5, 2, 4, 0, 6, 3, 6, 8, 9, 9, 1, 2, 5, 6, 0, 7, 1, 7, 6, 0, 6, 0, 5, 8, 8, 6, 1, 1, 6, 4, 6, 7, 1, 0, 9, 4, 0, 5, 0, 7, 7, 5, 4, 1, 0, 0, 2, 2, 5, 6, 9, 8, 3, 1, 5, 5, 2, 0, 0, 0, 5, 5, 9, 3, 5, 7, 2, 9, 7, 2, 5, 7, 1, 6, 3, 6, 2, 6, 9, 5, 6, 1, 8, 8, 2, 6, 7, 0, 4, 2, 8, 2, 5, 2, 4, 8, 3, 6, 0, 0, 8, 2, 3, 2, 5, 7, 5, 3, 0, 4, 2, 0, 7, 5, 2, 9, 6, 3, 4, 5, 0}
Dim n = v.Length - 1
Console.WriteLine(ElementoMax(v))
Console.ReadKey()
End Sub
Function ElementMax(vett() As Integer)
Dim MAX, temp1, temp2, temp
MAX = vett(0) * vett(1) * vett(2) * vett(3) * vett(4) * vett(5) * vett(6) * vett(7) * vett(8) * vett(9) * vett(10) * vett(11) * vett(12)
For i = 1 To (vett.Length - 13)
temp1 = vett(i) * vett(i + 1) * vett(i + 2) * vett(i + 3) * vett(i + 4) * vett(i + 5) * vett(i + 6) * vett(i + 7) * vett(i + 8) * vett(i + 9) * vett(i + 10)* vett(i + 11) * vett(i + 12)
temp2 = vett(i + 5) * vett(i + 6) * vett(i + 7) * vett(i + 8) * vett(i + 9) * vett(i + 10) * vett(i + 11) * vett(i + 12)
temp = temp1 * temp2
If temp > MAX Then
MAX = temp
End If
Next
Return MAX
End Function
End Module
y el resultado es ... ;-)
Obtendrá: Números: 99879 Producto: 40824
$no = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450";
$x = 0;
$a = 0;
$max = 0;
while($a != 63450){
$a = substr($no, $x, 5);
$prod = substr($a, 0, 1) * substr($a, 1, 1) * substr($a, 2, 1)* substr($a, 3, 1) * substr($a, 4, 1);
if($prod >= $max){
$max = $prod;
$theno = $a;
}
$x++;
}
echo ''Numbers: ''.$theno.''<br>'';
echo ''Product: ''.$max;
Sólo la improvisación en mi solución es evitar los cálculos innecesarios mirando hacia el futuro.
package com.euler;
public class Euler8 {
public static void main(String[] ar) throws Exception {
String s =
"73167176531330624919225119674426574742355349194934" +
"96983520312774506326239578318016984801869478851843" +
"85861560789112949495459501737958331952853208805511" +
"12540698747158523863050715693290963295227443043557" +
"66896648950445244523161731856403098711121722383113" +
"62229893423380308135336276614282806444486645238749" +
"30358907296290491560440772390713810515859307960866" +
"70172427121883998797908792274921901699720888093776" +
"65727333001053367881220235421809751254540594752243" +
"52584907711670556013604839586446706324415722155397" +
"53697817977846174064955149290862569321978468622482" +
"83972241375657056057490261407972968652414535100474" +
"82166370484403199890008895243450658541227588666881" +
"16427171479924442928230863465674813919123162824586" +
"17866458359124566529476545682848912883142607690042" +
"24219022671055626321111109370544217506941658960408" +
"07198403850962455444362981230987879927244284909188" +
"84580156166097919133875499200524063689912560717606" +
"05886116467109405077541002256983155200055935729725" +
"71636269561882670428252483600823257530420752963450" ;
Integer[] tokens = new Integer[s.length()];
for (int i = 0; i < s.length(); i++) {
tokens[i] = (int) s.charAt(i)-48;
}
int prod = 1;
int[] numberSet = new int[5];
int prodCounter = 1;
for (int i=0; i<tokens.length-4; i++) {
// Look ahead: if they are zeros in next 5 numbers, just jump.
if ( tokens[i] == 0) {
i = i+1;
continue;
} else if ( tokens[i+1] == 0) {
i = i+2;
continue;
} else if ( tokens[i+2] == 0) {
i = i+3;
continue;
} else if ( tokens[i+3] == 0) {
i = i+4;
continue;
} else if ( tokens[i+4] == 0) {
i = i+5;
continue;
}
int localProd = tokens[i] * tokens[i+1] * tokens[i+2] * tokens[i+3] * tokens[i+4];
System.out.println("" + (prodCounter++) + ")" + tokens[i] + "*" + tokens[i+1] + "*" + tokens[i+2] + "*" + tokens[i+3] + "*" + tokens[i+4] + " = " + localProd);
if (localProd > prod) {
prod = localProd;
numberSet[0] = tokens[i];
numberSet[1] = tokens[i+1];
numberSet[2] = tokens[i+2];
numberSet[3] = tokens[i+3];
numberSet[4] = tokens[i+4];
}
}
System.out.println("Largest Prod = " + prod + " By: (" + numberSet[0] + " , " + numberSet[1] + " , " + numberSet[2] + " , " + numberSet[3] + " , " + numberSet[4] + ")");
}
}
Un dígito es un solo 0-9 en la cadena que representa el número. Así que el número 12345 tiene 5 dígitos. 1234554321 tiene 10 dígitos.
El producto es el total multiplicativo, no el total agregado. Así que el producto de 3, 5 y 7 es 105.
Una forma (un tanto torpe) de reformular la pregunta sería:
Dado un número de 1000 dígitos, seleccione 5 dígitos consecutivos que, cuando se toman como números individuales y se multiplican juntos, dan el resultado más grande.
En C, lo copié en un archivo txt y lo leí, o simplemente puede inicializar la cadena al principio.
#include <stdio.h>
#include <stdlib.h>
int main()
{
FILE *a;
a=fopen("Long.txt","r");
char s[1001];
fscanf(a,"%s",s);
char p[6];
int i=0,x,prdmax=1,m,n;
while(s[i]!=''/0'')
{
p[0]=s[i];
p[1]=s[i+1];
p[2]=s[i+2];
p[3]=s[i+3];
p[4]=s[i+4];
p[5]=''/0'';
x=atoi(p);
n=x;
int prd=1;
while(x!=0)
{
int q=x%10;
prd*=q;
x/=10;
}
if(prd>prdmax)
{
prdmax=prd;
m=n;
}
i++;
}
printf("Numbers are: %d/n Largest product is: %d",m,prdmax);
fclose(a);
}
public class Problem008
{
public static int checkInt(String s)
{
int product = 1;
for (int i = 0; i < 5; i++)
{
Character c = new Character(s.charAt(i));
String tmp = c.toString();
int temp = Integer.parseInt(tmp);
product *= temp;
}
return product;
}
public static void main(String[] args)
{
long begin = System.currentTimeMillis();
String BigNum = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450";
String snip;
int largest = 0;
for (int i = 0; i <= (BigNum.length()-5); i++)
{
snip = null;
for (int j = 0; j < 5; j++)
{
char c = BigNum.charAt(i+j);
snip += c;
}
if (checkInt(snip) > largest)
largest = checkInt(snip);
}
long end = System.currentTimeMillis();
System.out.println(largest);
System.out.println(end-begin + "ms");
}
}
}
public class ProjectEuler8
{
public static void main(String[] args)
{
int list[] = new int[1000];
int max = 0;
String str = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450";
for (int index = 0; index < 1000; index++)
list[index] = str.charAt(index) - 48;
for (int count = 0; count < 996; count++)
{
int product = list[count] * list[count + 1] * list[count + 2] * list[count + 3] * list[count + 4];
if (product > max) max = product;
}
System.out.println(max);
}
}
Lo simple es mejor, ¿no es así?