.net - safe - concurrentdictionary
Implementación de la cola de bloqueo segura para subprocesos en.NET (7)
Estoy buscando una implementación de cola de bloqueo segura para subprocesos para .NET. Por "cola de bloqueo segura para subprocesos" quiero decir: - el acceso seguro a subprocesos a una cola donde el método Dequeue call bloquea un subproceso hasta que otro subproceso pone (Encoue) algún valor.
Por el momento he encontrado este: http://www.eggheadcafe.com/articles/20060414.asp (Pero es para .NET 1.1).
¿Podría alguien comentar / criticar la corrección de esta implementación? O sugerir alguna otra. Gracias por adelantado.
¿Qué tal este crear una cola de bloqueo en .NET ?
Si lo necesita para .NET 1.1 (no estaba seguro de la pregunta), simplemente descarte los genéricos y reemplace T
con el object
.
El ejemplo de Microsoft es bueno pero no está encapsulado en una clase. Además, requiere que el subproceso del consumidor se ejecute en el MTA (debido a la llamada WaitAny). Hay algunos casos en los que puede necesitar ejecutar un STA (p. Ej., Si está haciendo interoperabilidad COM). En estos casos, WaitAny no puede ser utilizado.
Tengo una clase de cola de bloqueo simple que soluciona este problema aquí: http://element533.blogspot.com/2010/01/stoppable-blocking-queue-for-net.html
Microsoft tiene una muestra bastante buena sobre esto:
//Copyright (C) Microsoft Corporation. All rights reserved.
using System;
using System.Threading;
using System.Collections;
using System.Collections.Generic;
// The thread synchronization events are encapsulated in this
// class to allow them to easily be passed to the Consumer and
// Producer classes.
public class SyncEvents
{
public SyncEvents()
{
// AutoResetEvent is used for the "new item" event because
// we want this event to reset automatically each time the
// consumer thread responds to this event.
_newItemEvent = new AutoResetEvent(false);
// ManualResetEvent is used for the "exit" event because
// we want multiple threads to respond when this event is
// signaled. If we used AutoResetEvent instead, the event
// object would revert to a non-signaled state with after
// a single thread responded, and the other thread would
// fail to terminate.
_exitThreadEvent = new ManualResetEvent(false);
// The two events are placed in a WaitHandle array as well so
// that the consumer thread can block on both events using
// the WaitAny method.
_eventArray = new WaitHandle[2];
_eventArray[0] = _newItemEvent;
_eventArray[1] = _exitThreadEvent;
}
// Public properties allow safe access to the events.
public EventWaitHandle ExitThreadEvent
{
get { return _exitThreadEvent; }
}
public EventWaitHandle NewItemEvent
{
get { return _newItemEvent; }
}
public WaitHandle[] EventArray
{
get { return _eventArray; }
}
private EventWaitHandle _newItemEvent;
private EventWaitHandle _exitThreadEvent;
private WaitHandle[] _eventArray;
}
// The Producer class asynchronously (using a worker thread)
// adds items to the queue until there are 20 items.
public class Producer
{
public Producer(Queue<int> q, SyncEvents e)
{
_queue = q;
_syncEvents = e;
}
public void ThreadRun()
{
int count = 0;
Random r = new Random();
while (!_syncEvents.ExitThreadEvent.WaitOne(0, false))
{
lock (((ICollection)_queue).SyncRoot)
{
while (_queue.Count < 20)
{
_queue.Enqueue(r.Next(0, 100));
_syncEvents.NewItemEvent.Set();
count++;
}
}
}
Console.WriteLine("Producer thread: produced {0} items", count);
}
private Queue<int> _queue;
private SyncEvents _syncEvents;
}
// The Consumer class uses its own worker thread to consume items
// in the queue. The Producer class notifies the Consumer class
// of new items with the NewItemEvent.
public class Consumer
{
public Consumer(Queue<int> q, SyncEvents e)
{
_queue = q;
_syncEvents = e;
}
public void ThreadRun()
{
int count = 0;
while (WaitHandle.WaitAny(_syncEvents.EventArray) != 1)
{
lock (((ICollection)_queue).SyncRoot)
{
int item = _queue.Dequeue();
}
count++;
}
Console.WriteLine("Consumer Thread: consumed {0} items", count);
}
private Queue<int> _queue;
private SyncEvents _syncEvents;
}
public class ThreadSyncSample
{
private static void ShowQueueContents(Queue<int> q)
{
// Enumerating a collection is inherently not thread-safe,
// so it is imperative that the collection be locked throughout
// the enumeration to prevent the consumer and producer threads
// from modifying the contents. (This method is called by the
// primary thread only.)
lock (((ICollection)q).SyncRoot)
{
foreach (int i in q)
{
Console.Write("{0} ", i);
}
}
Console.WriteLine();
}
static void Main()
{
// Configure struct containing event information required
// for thread synchronization.
SyncEvents syncEvents = new SyncEvents();
// Generic Queue collection is used to store items to be
// produced and consumed. In this case ''int'' is used.
Queue<int> queue = new Queue<int>();
// Create objects, one to produce items, and one to
// consume. The queue and the thread synchronization
// events are passed to both objects.
Console.WriteLine("Configuring worker threads...");
Producer producer = new Producer(queue, syncEvents);
Consumer consumer = new Consumer(queue, syncEvents);
// Create the thread objects for producer and consumer
// objects. This step does not create or launch the
// actual threads.
Thread producerThread = new Thread(producer.ThreadRun);
Thread consumerThread = new Thread(consumer.ThreadRun);
// Create and launch both threads.
Console.WriteLine("Launching producer and consumer threads...");
producerThread.Start();
consumerThread.Start();
// Let producer and consumer threads run for 10 seconds.
// Use the primary thread (the thread executing this method)
// to display the queue contents every 2.5 seconds.
for (int i = 0; i < 4; i++)
{
Thread.Sleep(2500);
ShowQueueContents(queue);
}
// Signal both consumer and producer thread to terminate.
// Both threads will respond because ExitThreadEvent is a
// manual-reset event--so it stays ''set'' unless explicitly reset.
Console.WriteLine("Signaling threads to terminate...");
syncEvents.ExitThreadEvent.Set();
// Use Join to block primary thread, first until the producer thread
// terminates, then until the consumer thread terminates.
Console.WriteLine("main thread waiting for threads to finish...");
producerThread.Join();
consumerThread.Join();
}
}
Para la referencia, .NET 4 introduce el tipo System.Collections.Concurrent.BlockingCollection<T>
para solucionar este problema. Para la cola de no bloqueo, puede utilizar System.Collections.Concurrent.ConcurrentQueue<T>
. Tenga en cuenta que ConcurrentQueue<T>
probablemente se usará como el almacén de datos subyacente para BlockingCollection<T>
para el uso del OP.
Queue.Synchronized http://msdn.microsoft.com/en-us/library/system.collections.queue.synchronized(VS.71).aspx
Es un punto de partida de todos modos, nunca he usado una cola de bloqueo. Lo siento por la publicación no tan relevante.
Sí, .NET4 contiene colecciones concurrentes. Por cierto, muy, muy bonito manual sobre Extensiones paralelas del equipo pfx - http://www.microsoft.com/downloads/details.aspx?FamilyID=86b3d32b-ad26-4bb8-a3ae-c1637026c3ee&displaylang=en .
pfx también está disponible para .net 3.5 como parte de Reactive Extensions.
Tenga en cuenta que bloquear el código de llamada puede ser una mejor opción si tiene control total sobre él. Considere el acceso a su cola en un bucle: estará adquiriendo innecesariamente bloqueos varias veces, lo que podría incurrir en una penalización de rendimiento.