spark retainedjobs jars deploy defaultcores cores hadoop apache-spark spark-streaming yarn

hadoop - retainedjobs - ¿Cómo saber cuál es el motivo de ClosedChannelExceptions con spark-shell en modo cliente YARN?



spark local ip (2)

He estado tratando de ejecutar spark-shell en modo client YARN, pero recibo muchos errores de ClosedChannelException . Estoy utilizando la versión 2.0.0 para Hadoop 2.6.

Aquí están las excepciones:

$ spark-2.0.0-bin-hadoop2.6/bin/spark-shell --master yarn --deploy-mode client Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). 16/09/13 14:12:36 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 16/09/13 14:12:38 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME. 16/09/13 14:12:55 ERROR cluster.YarnClientSchedulerBackend: Yarn application has already exited with state FINISHED! 16/09/13 14:12:55 ERROR client.TransportClient: Failed to send RPC 7920194824462016141 to /172.27.1.63:41034: java.nio.channels.ClosedChannelException java.nio.channels.ClosedChannelException 16/09/13 14:12:55 ERROR spark.SparkContext: Error initializing SparkContext. java.lang.IllegalStateException: Spark context stopped while waiting for backend at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:581) at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:162) at org.apache.spark.SparkContext.<init>(SparkContext.scala:549) at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2256) at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:831) at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:823) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:823) at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95) at $line3.$read$$iw$$iw.<init>(<console>:15) at $line3.$read$$iw.<init>(<console>:31) at $line3.$read.<init>(<console>:33) at $line3.$read$.<init>(<console>:37) at $line3.$read$.<clinit>(<console>) at $line3.$eval$.$print$lzycompute(<console>:7) at $line3.$eval$.$print(<console>:6) at $line3.$eval.$print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786) at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047) at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638) at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637) at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31) at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19) at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565) at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807) at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681) at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37) at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37) at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214) at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37) at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:94) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909) at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97) at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909) at org.apache.spark.repl.Main$.doMain(Main.scala:68) at org.apache.spark.repl.Main$.main(Main.scala:51) at org.apache.spark.repl.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:729) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) 16/09/13 14:12:55 WARN netty.NettyRpcEndpointRef: Error sending message [message = RequestExecutors(0,0,Map())] in 1 attempts org.apache.spark.SparkException: Exception thrown in awaitResult at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:77) at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:75) at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59) at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167) at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83) at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:102) at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:78) at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply$mcV$sp(YarnSchedulerBackend.scala:271) at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply(YarnSchedulerBackend.scala:271) at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply(YarnSchedulerBackend.scala:271) at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24) at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Caused by: java.io.IOException: Failed to send RPC 7920194824462016141 to /172.27.1.63:41034: java.nio.channels.ClosedChannelException at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:239) at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:226) at io.netty.util.concurrent.DefaultPromise.notifyListener0(DefaultPromise.java:680) at io.netty.util.concurrent.DefaultPromise.notifyListeners(DefaultPromise.java:567) at io.netty.util.concurrent.DefaultPromise.tryFailure(DefaultPromise.java:424) at io.netty.channel.AbstractChannel$AbstractUnsafe.safeSetFailure(AbstractChannel.java:801) at io.netty.channel.AbstractChannel$AbstractUnsafe.write(AbstractChannel.java:699) at io.netty.channel.DefaultChannelPipeline$HeadContext.write(DefaultChannelPipeline.java:1122) at io.netty.channel.AbstractChannelHandlerContext.invokeWrite(AbstractChannelHandlerContext.java:633) at io.netty.channel.AbstractChannelHandlerContext.access$1900(AbstractChannelHandlerContext.java:32) at io.netty.channel.AbstractChannelHandlerContext$AbstractWriteTask.write(AbstractChannelHandlerContext.java:908) at io.netty.channel.AbstractChannelHandlerContext$WriteAndFlushTask.write(AbstractChannelHandlerContext.java:960) at io.netty.channel.AbstractChannelHandlerContext$AbstractWriteTask.run(AbstractChannelHandlerContext.java:893) at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:357) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:357) at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111) ... 1 more Caused by: java.nio.channels.ClosedChannelException java.lang.IllegalStateException: Spark context stopped while waiting for backend at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:581) at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:162) at org.apache.spark.SparkContext.<init>(SparkContext.scala:549) at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2256) at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:831) at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:823) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:823) at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95) ... 47 elided <console>:14: error: not found: value spark import spark.implicits._ ^ <console>:14: error: not found: value spark import spark.sql ^ Welcome to ____ __ / __/__ ___ _____/ /__ _/ // _ // _ `/ __/ ''_/ /___/ .__//_,_/_/ /_//_/ version 2.0.0 /_/ Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_101) Type in expressions to have them evaluated. Type :help for more information. scala> 16/09/13 14:12:59 ERROR client.TransportClient: Failed to send RPC 5797372389565173518 to /172.27.1.63:41034: java.nio.channels.ClosedChannelException 16/09/13 14:12:59 WARN netty.NettyRpcEndpointRef: Error sending message [message = RequestExecutors(0,0,Map())] in 2 attempts org.apache.spark.SparkException: Exception thrown in awaitResult at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:77) at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:75) at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59) at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167) at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83) at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:102) at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:78) at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply$mcV$sp(YarnSchedulerBackend.scala:271) at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply(YarnSchedulerBackend.scala:271) at org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint$$anonfun$receiveAndReply$1$$anonfun$applyOrElse$1.apply(YarnSchedulerBackend.scala:271) at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24) at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Caused by: java.io.IOException: Failed to send RPC 5797372389565173518 to /172.27.1.63:41034: java.nio.channels.ClosedChannelException at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:239) at org.apache.spark.network.client.TransportClient$3.operationComplete(TransportClient.java:226) at io.netty.util.concurrent.DefaultPromise.notifyListener0(DefaultPromise.java:680) at io.netty.util.concurrent.DefaultPromise.notifyListeners(DefaultPromise.java:567) at io.netty.util.concurrent.DefaultPromise.tryFailure(DefaultPromise.java:424) at io.netty.channel.AbstractChannel$AbstractUnsafe.safeSetFailure(AbstractChannel.java:801) at io.netty.channel.AbstractChannel$AbstractUnsafe.write(AbstractChannel.java:699) at io.netty.channel.DefaultChannelPipeline$HeadContext.write(DefaultChannelPipeline.java:1122) at io.netty.channel.AbstractChannelHandlerContext.invokeWrite(AbstractChannelHandlerContext.java:633) at io.netty.channel.AbstractChannelHandlerContext.access$1900(AbstractChannelHandlerContext.java:32) at io.netty.channel.AbstractChannelHandlerContext$AbstractWriteTask.write(AbstractChannelHandlerContext.java:908) at io.netty.channel.AbstractChannelHandlerContext$WriteAndFlushTask.write(AbstractChannelHandlerContext.java:960) at io.netty.channel.AbstractChannelHandlerContext$AbstractWriteTask.run(AbstractChannelHandlerContext.java:893) at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:357) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:357) at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111) ... 1 more Caused by: java.nio.channels.ClosedChannelException


El motivo es que la asociación con el grupo de hilos puede perderse debido a un problema de asignación de memoria excesiva de Java 8: https://issues.apache.org/jira/browse/YARN-4714

Puede forzar a YARN a ignorar esto configurando las siguientes propiedades en yarn-site.xml

<property> <name>yarn.nodemanager.pmem-check-enabled</name> <value>false</value> </property> <property> <name>yarn.nodemanager.vmem-check-enabled</name> <value>false</value> </property>

Gracias a simplejack, Referencia de Spark Pi Ejemplo en modo Cluster con Yarn: Asociación perdida


Personalmente, resolví esto aumentando el yarn.nodemanager.vmem-pmem-ratio como se sugiere en el boleto de Jira por Akira Ajisaka :

<property> <name>yarn.nodemanager.vmem-pmem-ratio</name> <value>5</value> </property>